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What is Multipath-TCP (MPTCP)?	



•  Transport protocol that sends a stream of data via multiple paths. 	



•  It preserves all TCP’s semantics, e.g.,  connection oriented, flow 
control, congestion control and reliable data delivery.	



•  It is fair to competing TCP flows in a bottleneck link.	



•  It uses available network capacity more efficiently than TCP.	



•  It can be robust in case of network failure.	





MPTCP Implementations 
available in ns3	



  Linux kernel via ns-3-dce	



•  Hard to modify the core implementation inside the Linux.	



  MPTCP in ns-3.6	



•  Never  merged  with  any  stable  version  of  ns-3  and  became 
obsolete after TCP was rewritten in ns-3.8.	



•  A client can only connect to a server (no forking mechanism).	



•  No parallel execution of TCP and MPTCP in a node.	



•  Many other simplifications (e.g., TCP timeout behavior or TCP 
state transitions).	





•  Conforming  to  the  RFC  6824  (TCP  extension  for  Multipath 
Operation with Multiple Addresses). 	



•  Multiple MPTCP clients can connect to a MPTCP server.	



•  Parallel execution of TCP and MPTCP in a node.	



•  Multiple subflows can be established via different ports.	



•  Existing TCP functionality in ns-3 is not changed at all.	



	



Advantages of our implementation of 
MPTCP in ns3 	





•  Each  MPTCP connection  starts  with  master  subflow,  the  only 
subflow presented to the application.	



•  Each  MPTCP connection  can  have  several  subflows,  each  of 
which operates as regular TCP. 	
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Our Architecture of MPTCP in ns3	
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Our Architecture of MPTCP in ns3	



MpTcpSocketBase. 	


•  It mimics MPTCP control block and exports the socket API to ns-3 applications. 	



•  It performs data scheduling, path management, packet reordering, congestion 
control and loss recovery for all subflows.	



•  It is a subclass of TcpSocketBase class and handled by smart pointer.	



MpTcpSubflow.	


•  It represents an MPTCP subflow and is a subclass of the Object class.	



TcpL4Protocol.	


•  An interface between the transport and network layers.	



•  We have changed this class so that MPTCP connections can be handled, without 
disrupting any existing TCP functionality.	
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Functional decomposition of 
TcpL4Protocol	



(a) Requests for new MPTCP connections are resolved using the TCP header’s 
four-tuple and forwarded to the listening MpTcpSocketBase object.	



	



(b) Request for MPTCP data exchange, per each established subflow, is resolved 
using the TCP header’s four-tuple.	



	



(c) Requests for new subflow are resolved using the token, provided in MP_JOIN 
option, and forwarded to the respective MpTcpSocketBase.	



	



(d) All Requests regarding TCP operations are resolved using the four-tuple.	
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Simple simulations	
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MPTCP with single subflow. 	


It behaves exactly the same as TCP in 
ns-3.	


MSS is 536 bytes in all of our results.	



MPTCP with two subflows via two p2p 
links. 	


It becomes less aggressive than regular 
TCP after a packet drop.	





Simple simulations continue	



MPTCP  with  single  flow  and  two 
packet drops. 	


It  shows  the  TCP  NewReno  loss 
recovery algorithm.	
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MPTCP with single flow and four 
packet drops (entire window). 	


It shows the behavior of TCP 
NewReno timeout algorithm.	





Further information	



•  More information visit my personal homepage or ns3 wiki page: 	


  http://www.uclmail.net/users/m.kheirkhah/	


  http://www.nsnam.org/wiki/Current_Development	





Thank you!	




