
Morteza Kheirkhah	

Informatics Departments	

University of Sussex	

UK	

Implementation of Multipath-TCP in
Network Simulator-3	

What is Multipath-TCP (MPTCP)?	

•  Transport protocol that sends a stream of data via multiple paths. 	

•  It preserves all TCP’s semantics, e.g., connection oriented, flow
control, congestion control and reliable data delivery.	

•  It is fair to competing TCP flows in a bottleneck link.	

•  It uses available network capacity more efficiently than TCP.	

•  It can be robust in case of network failure.	

MPTCP Implementations
available in ns3	

  Linux kernel via ns-3-dce	

•  Hard to modify the core implementation inside the Linux.	

  MPTCP in ns-3.6	

•  Never merged with any stable version of ns-3 and became
obsolete after TCP was rewritten in ns-3.8.	

•  A client can only connect to a server (no forking mechanism).	

•  No parallel execution of TCP and MPTCP in a node.	

•  Many other simplifications (e.g., TCP timeout behavior or TCP
state transitions).	

•  Conforming to the RFC 6824 (TCP extension for Multipath
Operation with Multiple Addresses). 	

•  Multiple MPTCP clients can connect to a MPTCP server.	

•  Parallel execution of TCP and MPTCP in a node.	

•  Multiple subflows can be established via different ports.	

•  Existing TCP functionality in ns-3 is not changed at all.	

	

Advantages of our implementation of
MPTCP in ns3 	

•  Each MPTCP connection starts with master subflow, the only
subflow presented to the application.	

•  Each MPTCP connection can have several subflows, each of
which operates as regular TCP. 	

App-1

Socket

MPTCP Control Block

Subflows[0] Subflows[1] Subflows[2]

src: A1 dst: B1
sp: x dp: y

src: A2 dst: B1
sp: x dp: y

src: A1 dst: B2
sp: x dp: y

DATA DATA DATA

Applications
Networking stack

src: A1 dst: B1
sp: x dp: y

MPTCP in Linux

Architecture of MPTCP in Linux 	

Our Architecture of MPTCP in ns3	

``

App-1
Ipv4EndPoint

MpTcpSocketBase

MpTcpSubflow MpTcpSubflow MpTcpSubflow

Ipv4EndPoint Ipv4EndPoint Ipv4EndPoint

DATA DATA DATA

Applications
Networking stack

TcpL4Protocol

MPTCP in ns-3

Our Architecture of MPTCP in ns3	

MpTcpSocketBase. 	

•  It mimics MPTCP control block and exports the socket API to ns-3 applications. 	

•  It performs data scheduling, path management, packet reordering, congestion
control and loss recovery for all subflows.	

•  It is a subclass of TcpSocketBase class and handled by smart pointer.	

MpTcpSubflow.	

•  It represents an MPTCP subflow and is a subclass of the Object class.	

TcpL4Protocol.	

•  An interface between the transport and network layers.	

•  We have changed this class so that MPTCP connections can be handled, without
disrupting any existing TCP functionality.	

MpTcpSocketBase
(listening socket)

Ipv4EndPoint
src:0, dst:0, sp:X, dp:0

Ipv4EndPoint
src:A1, dst:B1, sp:X, dp:Y

MpTcpSocketBase
(accepted socket)

SYN + MP_CAPABLE
{src:A1, dst:B1, sp:Y, dp:X}

(a)

MPTCP data packet
{src:B1, dst:A1, sp:Y, dp:X}

(b)

SYN + MP_JOIN
{src:B2, dst:A2, sp:Y, dp:X}

(c)

TcpSocketBase

Ipv4EndPoint
src:A5, dst:B5, sp:X5, dp:Y5

TCP data packet
{src:B5, dst:A5, sp:Y5, dp:X5}

(d)

TcpL4Protocol

Forks new MpTcpSocketBase object

4-Tuple lookup() 4-Tuple lookup()4-Tuple lookup() Token lookup()

Functional decomposition of
TcpL4Protocol	

Functional decomposition of
TcpL4Protocol	

(a) Requests for new MPTCP connections are resolved using the TCP header’s
four-tuple and forwarded to the listening MpTcpSocketBase object.	

	

(b) Request for MPTCP data exchange, per each established subflow, is resolved
using the TCP header’s four-tuple.	

	

(c) Requests for new subflow are resolved using the token, provided in MP_JOIN
option, and forwarded to the respective MpTcpSocketBase.	

	

(d) All Requests regarding TCP operations are resolved using the four-tuple.	

	

Application

MpTcpSocketBase

Ipv4EndPoint

TcpL4Protocol

Ipv4L3Protocol

NetDevice

Node:ProtocolHandlers

Ipv4RoutingProtocol

Ipv4EndPointDemux

::m_receiveCallBack

::Receive()
::RouteInput()

::LocalDeliver()::Receive()

::Lookup()

::ForwardUp()

(m_rxCallBack)->ForwardUp()

(m_rxCallback)->Recv()

MpTcpSubflow
::LookUp()

Application

MpTcpSocketBase

TcpL4Protocol

Ipv4L3Protocol

NetDevice

::SendPendingData()

::SendPacket()

::m_downTarget() callback

MpTcpSubflow

::GetSubflow()

ArpIpv4Interface

::Send()

ArpL3Protocol
::LookUp()

::Send ()

P2P Link

Steps in sending a packet	

Simple simulations	

 0

 60

 120

 180

 0 0.2 0.4 0.6 0.8 1

C
W

N
D

Time (s)

DataRate:100Mbps Rtt:2ms Data:10Mb QueueSize:65pkts

Subflow 0
SSThresh 0

FastReTx
PartialAck

FullAck
DupAck

 0

 60

 120

 180

 0 0.1 0.2 0.3 0.4 0.5
C

W
N

D
Time (s)

DataRate:100Mbps Rtt:2ms Data:10Mb QueueSize:65pkts

Subflow 0
Subflow 1

SSThresh 0
SSThresh 1

FastReTx
PartialAck

FullAck
DupAck

MPTCP with single subflow. 	

It behaves exactly the same as TCP in
ns-3.	

MSS is 536 bytes in all of our results.	

MPTCP with two subflows via two p2p
links. 	

It becomes less aggressive than regular
TCP after a packet drop.	

Simple simulations continue	

MPTCP with single flow and two
packet drops. 	

It shows the TCP NewReno loss
recovery algorithm.	

 0

 15

 30

 45

 60

 0 0.5 1 1.5 2 2.5
Pa

ck
et

 N
um

be
r

(m
od

 6
0)

Time (s)

DataRate:800Kbps Rtt:100ms Data:100Kb QueueSize:100pkts

Data Ack Drop ReTx

 0

 15

 30

 45

 60

 0 0.5 1 1.5 2 2.5

Pa
ck

et
 N

um
be

r
(m

od
 6

0)

Time (s)

DataRate:800Kbps Rtt:100ms Data:100Kb QueueSize:100pkts

Data Ack Drop ReTx

MPTCP with single flow and four
packet drops (entire window). 	

It shows the behavior of TCP
NewReno timeout algorithm.	

Further information	

•  More information visit my personal homepage or ns3 wiki page: 	

  http://www.uclmail.net/users/m.kheirkhah/	

  http://www.nsnam.org/wiki/Current_Development	

Thank you!	

