Let Latency Guide You: Black-box characterisation of Cloud Application Performance

Hamed Saljooghinejad, Felix Cuadrado, Steve Uhlig Networks Research Group

PhD Student

11th July 2014

LATENCY MATTERS

Third-Party Apps

PUBLIC CLOUDS ARE USED EVERYWHERE

Amazon Cloud

1/3 of daily users

One third of all Internet users will access an Amazon AWS cloud site on average at least once a day.

% of Internet traffic

One percent of all Internet consumer traffic on average is coming or going to Amazon managed infrastructure.

4th largest CDN

Amazon's growing CloudFront and S3 traffic volumes recently made it the fourth largest CDN after Akamai, Limelight and Level3.

Craig Labovits, Deep Field, April 2012

www.qmul.ac.uk

CHALLENGE

And more ...

CHALLENGE

Model= t2.micro vCPU=1 **CPU Credits/hour=6** Mem (GiB)=1 Storage (GB)=EBS Only

Model= t2.small vCPU=1 CPU Credits/hour=12 Mem (GiB)=2 Storage (GB)=EBS Only

Model= t2.medium vCPU=2 CPU Credits/hour=24 Mem (GiB)=4 Storage (GB)=EBS Only

Model= m2.medium vCPU=1 Mem (GiB)=3.75 SSD Storage (GB)=1*4

Model= i2.4xlarge vCPU=16 Mem (GiB)=122 SSD Storage (GB)=4*800

Model= hs1.8xlarge vCPU=16 Mem (GiB)=177 SSD Storage (GB)=24*2048800 amazon web services™

Model= r3.large vCPU=2 Mem (GiB)=15.25 SSD Storage (GB)=1*32

Model= m3.large vCPU=2 Mem (GiB)=7.5 SSD Storage (GB)=1*32

Model= i2.2xlarge vCPU=8 Mem (GiB)=61 SSD Storage (GB)=2*800

Model= i2.8xlarge vCPU=32 Mem (GiB)=244 SSD Storage (GB)=8*800

Model= r3.xlarge vCPU=4 Mem (GiB)=30.5 SSD Storage (GB)=1*80

Model= m3.xlarge vCPU=4 Mem (GiB)=15 SSD Storage (GB)=2*40

Model= m3.2xlarge

vCPU=8

Mem (GiB)=30

SSD Storage (GB)=2*80

rackspace.

Model= g2.2xlarge Model= i2.xlarge vCPU=4 vCPU=8 Mem (GiB)=15 Mem (GiB)=30.5 SSD Storage (GB)=1*800 SSD Storage (GB)=1*160

vCPU=32 Mem (GiB)=60 SSD Storage (GB)=2*320

Model= c3.8xlarge

Model= c3.large vCPU=2 Mem (GiB)=3.75 SSD Storage (GB)=2*16

Model= r3.8xlarge vCPU=32 Mem (GiB)=244 SSD Storage (GB)=2*320

Model= r3.4xlarge vCPU=16 Mem (GiB)=122 SSD Storage (GB)=1*320

Model= r3.2xlarge vCPU=8 Mem (GiB)=61 SSD Storage (GB)=1*160

Model= c3.2xlarge vCPU=8 Mem (GiB)=15 SSD Storage (GB)=2*80

Model= c3.4xlarge

vCPU=16

Mem (GiB)=30

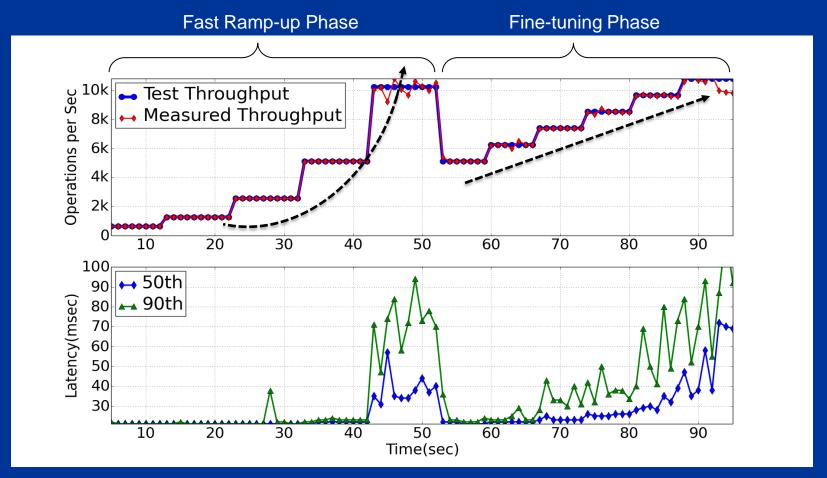
SSD Storage (GB)=2*160

Model= c3.xlarge vCPU=4 Mem (GiB)=7.5 SSD Storage (GB)=2*40

TOOL

1) Send the workload(requests)

- 2) Receive the responses
- 3) Capture the timestamps
- 4) Measure the Latencies
- 5) Identify the Throughput


Goals:

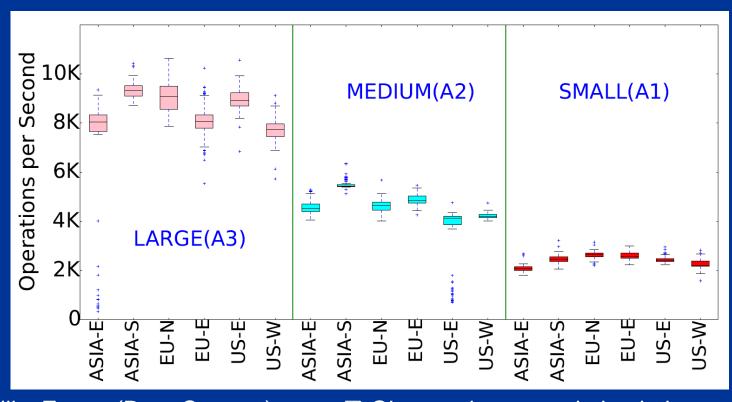
- ☐ Sample the application responsiveness vs. various workloads
- ☐ Helps to pick VMs with better performance

METHODOLOGY

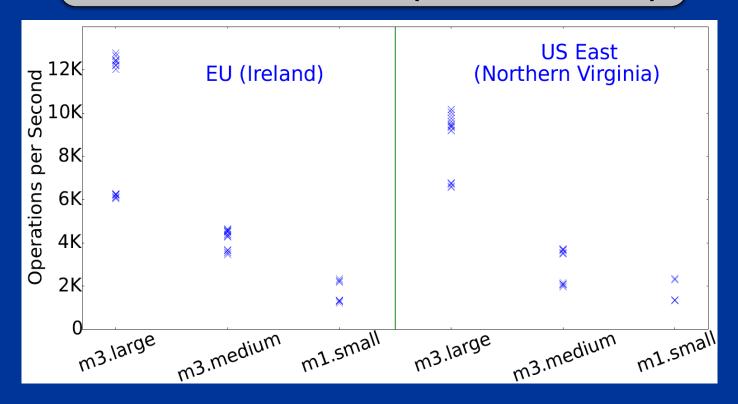
□ RTT is a hint to detect the server side latency status

MEASUREMENTS SETUP

☐ Implementing the methodology as a Plugin for Apache-Jmeter

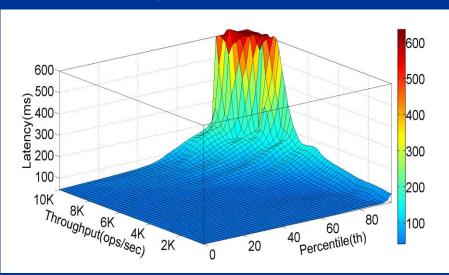

☐ Using a real Cloud application for our benchmarking (Apache Cassandra)

1-BENCHMARKING (MICROSOFT AZURE)

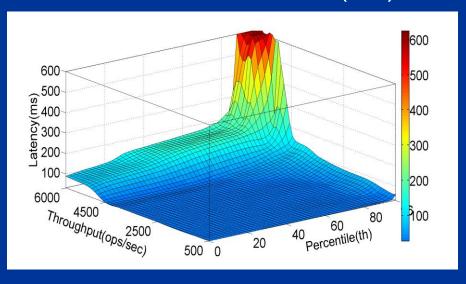

- ☐ 6 Availability Zones (Data Centers)
- ☐ Observed more variation in larger instances

☐ 3 types of Instances

1- BENCHMARKING (AMAZON EC2)


- ☐ Two separate performance bands(Same behavior seen in Google Compute Engine platform)
- Most likely because of the Hardware heterogeneity[1]

[1] Ou, Zhonghong, et al. "Exploiting hardware heterogeneity within the same instance type of Amazon EC2." 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud). 2012.



2- IDENTIFY LATENCY/THROUGHPUT TRADE-OFF

Large instance(A3)

Medium instance(A1)

- ☐ Helps application providers in their deployment and provisioning decisions
- ☐ Future work direction

CONCLUSION

- Statistical properties of latency to detect the fine-grained behavior of an application
- A black-box methodology that estimates the workload a Cloud application can sustain
- Benchmarking a cloud application in various cloud platform
- Identify a trade-off between the throughput and latency of application servers, which can help application providers in their deployment and provisioning decisions



Thanks!

BENCHMARKING (PLANETLAB)

- 193 nodes
- 109, 59, 9, 13, 3 nodes in Europe, North and South America, Asia and Australia
- Some of the nodes have performance equivalent to commercial platforms

