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Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...
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No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
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Solution — FLICK

A domain specific language allowing fast specification of network
functions.

A platform for running compiled FLICK programs giving
performance and isolation on shared resources.




FLICK overview
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@ Programs — Domain specific HLL. “Safe by design”.
@ Task graphs — takes care of task/data parallelism.

@ Platform — scheduling and memory management.



FLICK's tricks — the language

type cmd: record

opcode : string
keylen : integer
extraslen : integer
_ : string
bodylen : integer
_ : string
key string
_ string

proc Memcached:

(cmd/cmd client,

{size=1}

{signed=false, size=2}
{signed=false, size=1}

{size=3}

{signed=false, size=8}
{size=12+extraslen}
{size=keylen}
{size=bodylen-extraslen-keylen}

[cmd/cmd] backends)

global cache := empty_dict
backends => update_cache(cache) => client
client => test_cache(client, backends, cache)

“Safe-by-design” — small data items, light processing.

Non Turing complete language.

Type system implies serialisation/deserialisation.

Processes application semantics.



FLICK's tricks — the task graph
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@ Tasks — process streams in batches of one or more “data
units”. Yield after a small time limit (~100pus).

@ Tasks take advantage of task and data parallelism.

@ 1/0 tasks convert wire format to/from app specific data
items. Processing tasks “do the work™.



FLICK's tricks — the platform
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@ Virtual machine for implementing task graphs.
@ Handle scheduling and worker threads.

@ Instantiate task graphs to process new streams.



Performance — memcached example
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@ Penalty of generalisation is extremely low.

@ Initial results promising — ongoing work.



Conclusions/Future Work

Conclusions

o FLICK language — developers express network applications in
a high level.

@ FLICK platform — performant, safe implementation on real
hardware.

@ Integrate with DPDK/mtcp (userspace) for better
performance.

@ Hardware offloading to NetFPGA.
@ SDN for control of data to/from FLICK platform.
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