
FLICK: Application specific
network functions for

datacentres

Richard G. Clegg Imperial College
Work joint with the Network-as-a-Service project:

Imperial College: Abdul Alim, Paolo Costa, Luo Mai, Peter Pietzuch, Lukas
Rupprecht, Alexander Wolf

Cambridge: Jon Crowcroft, Anil Madhavapeddy, Andrew Moore, Richard Mortier, Nik
Sultana

Nottingham: Derek McAuley, Masoud Koleini, Carlos Oviedo

Talk to Coseners/MSN 2015

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...
Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
pairs, memcached responses) message not packet oriented.

Solution – FLICK

A domain specific language allowing fast specification of network
functions.
A platform for running compiled FLICK programs giving
performance and isolation on shared resources.

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...
Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
pairs, memcached responses) message not packet oriented.

Solution – FLICK

A domain specific language allowing fast specification of network
functions.
A platform for running compiled FLICK programs giving
performance and isolation on shared resources.

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...
Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
pairs, memcached responses) message not packet oriented.

Solution – FLICK

A domain specific language allowing fast specification of network
functions.
A platform for running compiled FLICK programs giving
performance and isolation on shared resources.

FLICK overview

compiled

FLICK task graphs

tasks

loaded &
executed

1 2 3

FLICK platform

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

FLICK programs

cooperative scheduling

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

Listing 1: FLICK program for Memcached cache router

1 type cmd: record
2 opcode : string {size =1}
3 keylen : integer {signed=false , size =2}
4 extraslen : integer {signed=false , size =1}
5 _ : string {size =3}
6 bodylen : integer {signed=false , size =8}
7 _ : string {size =12+ extraslen}
8 key : string {size=keylen}
9 _ : string {size=bodylen -extraslen -keylen}

10

11 proc memcached:
12 (cmd/cmd client , [cmd/cmd] backends)
13 global cache := empty_dict
14 backends => update_cache(cache) => client
15 client => test_cache(client , backends , cache)
16

17 fun update_cache:
18 (cache: ref dict <string*string >, resp: cmd)
19 -> (cmd)
20 if resp.opcode = 0x0c:
21 cache[resp.key] := resp
22 resp
23

24 fun test_cache:
25 (-/cmd client , [-/cmd] backends ,
26 cache:ref dict <string*string >, req:cmd)
27 -> ()
28 if cache[req.key] = None or req.opcode <> 0x0c:
29 let target = hash(req.key) mod len(backends)
30 req => backends[target]
31 else:
32 cache[req.key] => client

tions: types (lines 1–9), processes (lines 11–15) and func-
tions (lines 17–32).
Types provide high-level definitions of middlebox data val-
ues and, through serialisation annotations, abstract how val-
ues of each type are to be formatted to be sent over or read
from a channel, each of which represents a byte stream.
Types whose values will never cross the network do not need
serialisation annotations. In Listing 1, lines 1 to 9 describe
cmd, the type of Memcached commands, either requests for
a key or replies associating a key with a value, which share
a common format.

Serialisation annotations specify either binary or text
based formats using a mix of fixed and variable lengths
fields. The length of the key, field varies and is specified by
the earlier keylen field. Unused fields are anonymised using
‘_’, preventing their values being accidentally accessed or
changed anywhere in the program. Processing requests and
replies requires access to the opcode field, to select get key
replies (GETK, opcode = 0x0c) which are cached by the
router for matching with future get key requests; and the key
field to perform the match and select the backend to which
to forward the request in case of a cache miss.
Processes describe the middlebox’s input/output channels
and core computation. Channels are bi-directional and typed
according to the type of values produce/consume. In List-

ing 1, lines 11 to 15 show the memcached process’ descrip-
tion. Its channels are shown on lines 12: the client channel
produces and accepts values of type cmd, while backends is
an array of channels which each produces and accepts values
of type cmd.

Processes are instantiated by the runtime system which
also binds channels to the actual byte streams. In this exam-
ple, when a client connects to the middlebox, the runtime
creates a new instance of the memcached process and con-
nects it to the underlying representations of the client and
backend sockets.

Computation is specified by defining how data is routed
and processed as it flows across channels connected to the
process. The body of a process specifies how a finite amount
of input from each channel is consumed; unbounded iter-
ation is not permitted, as we will explain §3.2). The body
of the memcached process, lines 14 and 15 is the core of
this middlebox. The first line specifies that anything received
from any backend is handled by update_cache function,
whose result is then sent on the client channel. The sec-
ond line specifies that anything received from the client is
processed by the test_cache function.

Processes may maintain state between inputs, either be
per-instance or per-process (global). For example, line 13
specifies that instances of this memcached process share a
cache.
Functions support processes by allowing structuring of code
but they need not be side-effect free. For example, both func-
tions in Listing 1 have side-effects: update_cache updates
the cache if required, while test_cache writes to a channel
in the backends array.

Finally the type of a function need not be more general
than necessary. We saw that processes interact with the en-
vironment by means of bidirectional channels, but channels
can also be restricted to be unidirectional, as at line 25: nei-
ther the client channel nor any channels in the backends
array are read from in the test_cache function, so they are
typed as being write-only.

3.2 Higher-order functions and bounded resources
To support execution of different processes competing on
shared resources without requiring expensive isolation tech-
niques, FLICK’s expressive power is restricted to allow only
computation guaranteed to terminate.
Fold, map and filter. User-defined functions in FLICK are
restricted to be first-order and cannot be recursive (directly
or indirectly). FLICK provides several higher-order functions
to support common functional transformation, starting with
fold. Folds are a family of bounded iteration operators de-
fined over finite structures (lists). The simplest form of such
functions is fold f acc list, which recursively applies the
function f to each element of list, accumulating the result
into acc, which it ultimately returns. FLICK provides other
common higher-order functions such as map and filter.

5 2015/3/26

threads

channels

Programs – Domain specific HLL. “Safe by design”.

Task graphs – takes care of task/data parallelism.

Platform – scheduling and memory management.

FLICK’s tricks – the language

1 type cmd: record

2 opcode : string {size =1}

3 keylen : integer {signed=false , size =2}

4 extraslen : integer {signed=false , size =1}

5 _ : string {size =3}

6 bodylen : integer {signed=false , size =8}

7 _ : string {size =12+ extraslen}

8 key : string {size=keylen}

9 _ : string {size=bodylen -extraslen -keylen}

10
11 proc Memcached:

12 (cmd/cmd client , [cmd/cmd] backends)

13 global cache := empty_dict

14 backends => update_cache(cache) => client

15 client => test_cache(client , backends , cache)

“Safe-by-design” – small data items, light processing.

Non Turing complete language.

Type system implies serialisation/deserialisation.

Processes application semantics.

FLICK’s tricks – the task graph

Task Graph – App specific DAG of independently schedulable
tasks.

Tasks – process streams in batches of one or more “data
units”. Yield after a small time limit (∼100µs).

Tasks take advantage of task and data parallelism.

I/O tasks convert wire format to/from app specific data
items. Processing tasks “do the work”.

FLICK’s tricks – the platform

Program Instance

Application dispatcher

Graph dispatcher

4

Graph pool

Scheduler

Task Queue

Worker Threads

Virtual machine for implementing task graphs.

Handle scheduling and worker threads.

Instantiate task graphs to process new streams.

Performance – memcached example

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 5 10 15 20 25

9
9

th
%

ile
 l
a
te

n
cy

 (
m

s)

Number of clients

twemproxy
FLICK

Penalty of generalisation is extremely low.

Initial results promising – ongoing work.

Conclusions/Future Work

Conclusions

FLICK language – developers express network applications in
a high level.

FLICK platform – performant, safe implementation on real
hardware.

Future work

Integrate with DPDK/mtcp (userspace) for better
performance.

Hardware offloading to NetFPGA.

SDN for control of data to/from FLICK platform.

	Introduction
	FLICK's tricks
	Conclusions

