FLICK: Application specific
network functions for
datacentres

:B:::Q\
Do O
20

Richard G. Clegg Imperial College
Work joint with the Network-as-a-Service project:
Imperial College: Abdul Alim, Paolo Costa, Luo Mai, Peter Pietzuch, Lukas
Rupprecht, Alexander Wolf
Cambridge: Jon Crowcroft, Anil Madhavapeddy, Andrew Moore, Richard Mortier, Nik
Sultana
Nottingham: Derek McAuley, Masoud Koleini, Carlos Oviedo

Talk to Coseners/MSN 2015

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...

Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...

Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
pairs, memcached responses) message not packet oriented.

Application-specific network functions

Problem

Modern datacentres have many application-specific network
functions: load-balancers, cacheing, aggregation...

Written from scratch in low-level programming languages.
No function isolation or sharing of resources.

Core concept: Same box, many apps processing TCP streams at
layer 7. Work on streams of data items from apps (e.g. key-value
pairs, memcached responses) message not packet oriented.

Solution — FLICK

A domain specific language allowing fast specification of network
functions.

A platform for running compiled FLICK programs giving
performance and isolation on shared resources.

FLICK overview

r cooperative scheduling-------

i 1
0 1
tasks ! |
ithreads]
1
—) —) HloH =
compiled loaded & | i
executed ! i
! “channels | !
FLICK programs FLICK task graphs FLICK platform

@ Programs — Domain specific HLL. “Safe by design”.
@ Task graphs — takes care of task/data parallelism.

@ Platform — scheduling and memory management.

FLICK's tricks — the language

type cmd: record

opcode : string
keylen : integer
extraslen : integer
_ : string
bodylen : integer
_ : string
key string
_ string

proc Memcached:

(cmd/cmd client,

{size=1}

{signed=false, size=2}
{signed=false, size=1}

{size=3}

{signed=false, size=8}
{size=12+extraslen}
{size=keylen}
{size=bodylen-extraslen-keylen}

[cmd/cmd] backends)

global cache := empty_dict
backends => update_cache(cache) => client
client => test_cache(client, backends, cache)

“Safe-by-design” — small data items, light processing.

Non Turing complete language.

Type system implies serialisation/deserialisation.

Processes application semantics.

FLICK's tricks — the task graph

I ON
SA
/v
_> -
@ Task Graph — App specific DAG of independently schedulable
tasks.

—>

@ Tasks — process streams in batches of one or more “data
units”. Yield after a small time limit (~100pus).

@ Tasks take advantage of task and data parallelism.

@ 1/0 tasks convert wire format to/from app specific data
items. Processing tasks “do the work™.

FLICK's tricks — the platform

Program Instance--~~~----------------- Scheduler
-|_> A A [

i D Or(D Or(! Task Queue

1 v v |

e ey] [ADO

! I

: Graph dispatcher— ¢ ! i

i Glraph pool--- |, i i

! | L 1® [

: | lD‘O q | i I'| Worker Threads

! | Dv I [

| | i DIO

l |

| [

|

@ Virtual machine for implementing task graphs.
@ Handle scheduling and worker threads.

@ Instantiate task graphs to process new streams.

Performance — memcached example

— 2 -

E 1.8 - twemproxy —+— X
< 16+ FLICK =-=-X--- el

9 1.4 +

o 1.2+

5 1-

R

£ 04

& 0.2 +

o O T T T T 1

0 5 10 15 20 25
Number of clients

@ Penalty of generalisation is extremely low.

@ Initial results promising — ongoing work.

Conclusions/Future Work

Conclusions

o FLICK language — developers express network applications in
a high level.

@ FLICK platform — performant, safe implementation on real
hardware.

@ Integrate with DPDK/mtcp (userspace) for better
performance.

@ Hardware offloading to NetFPGA.
@ SDN for control of data to/from FLICK platform.

	Introduction
	FLICK's tricks
	Conclusions

