
Transport-Layer Support for Interactive Multimedia
Applications

Stephen McQuistin
Colin Perkins

• Multimedia traffic comprises the
majority of Internet traffic: 57% in
2013, predicted to grow to 75% by
2018*

• WebRTC standards are likely to
increase interactive multimedia traffic
share

• These applications have strict latency
bounds

• Important to consider these bounds
throughout the protocol stack: this
work focuses on the transport layer

Interactive Multimedia Applications

Ossification

• (PR-)SCTP and DCCP

• The transport layer has ossified around TCP and
UDP: new protocols see very limited deployment

• This ossification is caused by middleboxes in the
network: firewalls, NATs, caches ..

• These middleboxes often inspect IP segment
payloads, dropping packets with unfamiliar transport
headers

TCP vs UDP

• TCP guarantees reliability and provides congestion
control, but introduces delay

• UDP doesn’t introduce delay, but it also doesn’t offer
reliability guarantees or congestion control

• While most applications use UDP, this is frequently
blocked by enterprise firewalls

• Goal: give applications more control over latency in
TCP

Unordered, Time-Lined TCP

• We propose unordered, time-lined, TCP (uTLTCP), a
set of modifications to TCP

• Adds three services to TCP: unordered message
delivery, time-lines, and dependencies

Architecture

• User-level intermediary layer

• Kernel extensions

• Partial deployment of kernel extensions possible, but intermediary layer
needed at both endpoints

Application

uTLTCP Intermediary Layer

TCP

System API

uTLTCP extensions

Messages and Framing

• Other modifications require partial reliability, and messages are
needed to support this

• Applications pass messages to the intermediary layer, which
encodes them to be sent over TCP’s byte stream

• At the receiver, the kernel extensions remove the in-order delivery
buffer; segments are passed to the intermediary layer as they arrive

• The intermediary layer then decodes the segments, and passes the
messages to the application

• Other modifications: Nagle algorithm is disabled, and path MTU is
exposed

Messages and framing

TCP

uTLTCP
incoming segment

from network

receive queue

next segment
to application

incoming segment
from network

out-of-order

in-order

reassembly queue

receive queue

dequeued when
in-order

requested bytes
to application

Time-lines and sub-streams

• Applications can specify a deadline by which a message must be
received

• This reflects the delivery model needed by interactive applications:
a VoIP message, for example, is only useful if it arrives before it
needs to be played out

• uTLTCP combines the deadline with a round-trip time (RTT) estimate
and play-out delay value to estimate if a message will arrive on time

• If it won’t, then it tries to find a replacement in the sending buffer

• Sub-stream support allows non-time-lined data to be multiplexed
on the same connection

Time-lines

retransmission
request

data sent from application (increasing timestamps)

segment
resent

network layer

data sent from application (increasing timestamps)

Time-line and dependency check

retransmission
request

segment
resent

network layer

if expired, find alternative and replace

TCP

uTLTCP

Inconsistent retransmissions:
same TCP sequence number, different payload

Dependencies

• Applications can express dependencies between two
messages using sequence numbers

• If a message expires, then its dependents also expire

• A message with an expired dependency will only be
sent if no other replacements can be found

• It takes approximately 1 RTT
for a retransmission to arrive

• This retransmission will only
be useful if the play-out
buffer is greater than 1 RTT

Initial Analysis

Sender Receiver

~1 RTT

seq 1
seq 2
seq 3
seq 4

ack 1
ack 1

ack 1

seq 1

seq 5

ack 1

Deployability

• Only wire-visible change to TCP: inconsistent
retransmissions

• Tested by deploying Raspberry Pi devices in homes,
and connecting to mobile networks

• All wired providers deliver inconsistent
retransmissions successfully

• 3 of the 4 mobile providers tested deliver cached TCP
segments, while 1 delivered inconsistent
retransmissions

Future work

• Further analysis: when will there be a suitable
replacement in the queue?

• Further deployability measurements

• Real-world evaluations to show that the protocol
helps in realistic conditions

