
Distributed Computing
with Channel Noise

Jared Saia

Joint with Abhinav Aggarwal, Varsha Dani,
and Tom Hayes

University of New Mexico

Error Correction
Shannon

Information Theory & Entropy

Random Errors

Hamming

Hamming Bound (aka Sphere-Packing
Bound)

Adversarial Errors

Richard Hamming

"And so I said, 'Damn it, if the machine can
detect an error, why can't it locate the position
of the error and correct it?'"

How can we compute over a noisy channel?

Our Problem

Texting with Noise

Alice, Bob & Carol have personal
preferences for what they want to eat

The run a protocol to find a place that is
mutually desirable

Today they have a noisy connection

Alice wants
liquid kale

Sushi? Smoothie?

Alice wants
liquid ale

“Swan in
Rushes” Pub?

“Swan in
Rushes” Pub?

“Swan in
Rushes” Pub?

No. Sushi! No. Sushi! No. Sushi!

k LOLk LOLk LOL

The Problem
Given a protocol π

π sends L bits over noise-free channels

Create a new protocol π’

π’ sends L’ bits over noisy channels

Goal: L’ is small function of L

Time

Local computation is instantaneous

Time is divided into (channel) steps

In each step, can send one bit over a
channel

Goal: Minimize steps

Why Hard?
Assume

Alice and Bob just send 1 bit back and
forth in π

Then

Naive use of ECC requires advance
knowledge of noise rate for each
transmission

Schulman ‘96

π takes L steps over noise-free channel

Only two players

An adversary flips < ε (1/240) fraction of bits

Channels are public

Result: Can create protocol π’ so L’ = θ (L)

Subsequent work: n-players
Much prior work assumes either:

There is a coordinating node connected to
all players; or

Network topology is known to all players.

This talk: focus on case where the network
topology is arbitrary and unknown in advance

Additionally assume that π is asynchronous

[Censor-Hillel, Gelles, Haeupler ’17]
L and T are known in advance

All channels are public

π is asynchronous

π’ is asynchronous; adversary can’t insert/delete
messages

Tolerates O(1/n) fraction corruptions, sends O(L n log² n)
bits

O(1/n) noise tolerance is optimal with public channels

Asynchronous π

Messages delivered intermittently

Players have no clocks

XXX

Why necessary?

Our Model

Adversary knows π, and our encoding algorithm

Adversary doesn’t know local random bits, or
bits sent on channel i.e. private channels

Adversary selects location of bits to flip

π is asynchronous; π’ is synchronous
Can also handle π’ asynchronous & adversary can’t
insert/delete messages

Why Private Channels?
If adversary knows bits, then

Adversary flips bits from Alice to Bob

Convinces Bob that protocol π₁ is being
run rather than protocol π₂

Succeeds since can flip any number of
bits

Our Result

Succeeds with probability 1 - δ, for δ>0

Sends O(L log (n(L+T)/δ) + T) bits

L and T are unknown in advance

All channels are private

α = average message size in π

Total bits sent: O(L (1 +1/α log (n(L+T)/δ)) + T)

Algorithm Overview

Problem: Message Corruption

Solution: Algebraic Manipulation
Detection (AMD) Codes

[Cramer et al. ’08]

AMD Codes
Encode a message m into a message m’

Any bit flipping of m’ is detected with probability
1 - δ

|m’| = |m| + O(log 1/δ)

N.B.: Works only with private channels!

Problem 2: Bit Blowup

Problem: Adversary flips one bit, we must
resend log bits

Solution: Make the adversary corrupt
constant fraction of bits to trigger a resend

Using ECCs, can require adversary to
corrupt 1/3 of the bits to trigger resend

Other Problems
Problem: Don’t know L and T

Solution: Increase encoding strength over time

Problem: Differentiating message resend and
repeated message

Solution: Use a message number parity bit

Problem: Adversary installs messages during
channel silence

Solution: Use session keys

Algorithm
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

Alice asks Bob for a key, and sends her key k1 along.

Bob replies with his key k2 along with k1’.

If k1’=k1, Alice sends ((m,b),k2) to Bob. Else, she starts over.

If received correctly, Bob is done and remains silent. Interprets m
as a resend if b is unchanged, else a fresh message.

Else he sends noise.

If noise, Alice starts over. Else, she is done.

EC
C

, A
M

D

en
co

de
d.

Ap

pe
nd

ed
 w

ith

 ra
nd

om
 b

its
.

(k2,k1)

(m,k2)

……

“My key is k1.
What’s yours?”

Conclusion

An Application
Alice wants to send L bit message to Bob

Connected via a private channel

Neither knows T, Bob does not know L

Result: Succeeds with error probability 1/poly(L),
sends expected

L + O(T + min((T+1)log L, L log L)

Only L + O(log L) bits sent when T = O(1)

Can we match the L + O(T) lower bound?

Asynchronous π’ with adversarial insertions?

Can we unify node faults and edge faults into
one grand model?

Future Work

Questions?

Algorithm Overview

First Algorithm
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

Alice sends m to Bob.

If received correctly, Bob is done and
remains silent. Else he sends noise.

If noise, Alice starts over. Else, she is done.

Ro
un

d

EC
C

,A
M

D

en
co

de
d

Problem: Sleeping Players

zzz

……

m

Problem: Adversary installs a
message while Alice sleeps

Solution: Keys

k

(m,k)

……

“Key Please”

Problem: Sleeping Bob

zzz

k

(m,k)

……

“Key Please”

Problem: Alice thinks Bob received
the message, but he didn't

Solution: Keys for Everyone

(k2,k1)

(m,k2)

……

“My key is k1.
What’s yours?”

Algorithm with Keys
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

Alice asks Bob for a key, and sends her key k1 along.

Bob replies with his key k2, along with k1’.

If k1’=k1, Alice sends (m,k2) to Bob. Else, she starts over.

If received correctly, Bob is done and remains silent. Else
he sends noise.

If noise, Alice starts over. Else, she is done.

EC
C

, A
M

D

 e
nc

od
ed

How long should keys be?

If key length is logarithmic in L, T and n,
then adversary can never guess a key

Cost?

Say m is always 1 bit

Then get logarithmic blowup

Problem: Don’t know L and T!

Solution: Increase key size slowly over time

Probability of correct guess decreases
exponentially with key length

Thus, can keep key bits small

Same holds for AMD encoding strength!

Problem 1: Forging Silence

Adversary “silences out” communication

Solution: Make silence hard
to forge

Silence
A b-bit string is silence if it has less than
b/3 bit alternations

Append logarithmic number of random
bits to each word

Pr (“silencing” these random bits) is
exponentially small

Modified Algorithm - Add
random bits
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

Alice asks Bob for a key, and sends her key k1 along.

Bob replies with his key k2 along with k1’.

If k1’=k1, Alice sends (m,k2) to Bob. Else, she starts over.

If received correctly, Bob is done and remains silent. Else
he sends noise.

If noise, Alice starts over. Else, she is done.

EC
C

, A
M

D

en
co

de
d.

Ap

pe
nd

ed
 w

ith

 ra
nd

om
 b

its
.

Problem 2: Duplicate messages

Bob thinks that a resend is a fresh message

Solution: Message parity bit

Append j-th message from Alice to
Bob with (j mod 2)

This bit remains same throughout
resends

Final Algorithm
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

Alice asks Bob for a key, and sends her key k1 along.

Bob replies with his key k2 along with k1’.

If k1’=k1, Alice sends ((m,b),k2) to Bob. Else, she starts over.

If received correctly, Bob is done and remains silent. Interprets m
as a resend if b is unchanged, else a fresh message.

Else he sends noise.

If noise, Alice starts over. Else, she is done.

EC
C

, A
M

D

en
co

de
d.

Ap

pe
nd

ed
 w

ith

 ra
nd

om
 b

its
.

Analysis Sketch

Hamming

“Shortly before the first field test … a man asked
me to check some arithmetic he had done, and I
agreed, thinking to fob it off on some
subordinate. When I asked what it was, he said,
‘It is the probability that the test bomb will ignite
the whole atmosphere.’ I decided I would check
it myself!”

Correctness of Simulation
Alice initiates send of m to Bob in π’:

(1) She finishes sending m in some round

(2) Either Bob receives m, or he is in a
termination state in π

For every message m that Bob receives,
Alice must have sent m

Probability of success

Round Sizes
Each round is 4 words long

In round r,

Words are of length O(log (nr/δ))

=> Round size is O(log (nr/δ))

Bob updates his round size similarly

Failure Events

Failure of AMD Codes

Forging Silence

Impersonation

Sushi? —————> Smoothie?

… —————> Smoothie?

Sushi? —————> …

1) On any of the 4 words in a given round

2) On any of the channels between n²
pairs of users in a given round

3) In any round before termination

Failure Events can happen:

Failure of AMD Codes
In round r, set AMD encoding strength to
(n π r)⁻² δ/2

Then,

Pr (F) ≤ ∑1 ≤ i,j ≤ n ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/2 ≤ δ/3

Forging Silence
In round r, number of random bits in each word
is 38 log (2 π n r / √δ)

Probability of converting to silence ≤ (n π r)⁻² δ/4

Thus,
Pr (F) ≤ ∑1 ≤ i,j ≤ n ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/4 ≤ δ/6 ≤
δ/3

Impersonation
In round r, keys in each word have length
2 log (4 π n r / √δ)

So probability of guessing a key ≤ (n π r)⁻² δ/16

Thus,
Pr (F) ≤ ∑1 ≤ i,j ≤ n ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/16 ≤ δ/24
≤ δ/3

Failure probability

Union bound over the three failure
events

Total failure probability
≤ δ/3 + δ/3 + δ/3 = δ

Number of bits sent

Recall :

To corrupt a message of size ℓ, adversary
spends Θ(ℓ).

We consider only the rounds that are
successful

Additional cost will be O(T)

Number of bits sent

In round r ≥ 1, four codewords each of length
O(log (nr/δ))

O(∑ log (nr/δ)) bits sent over all rounds

How many rounds?

Let t(r) be the time at which round r begins.

t(r+1) = t(r) + O(log (nr/δ))

which gives t(r) = O(r log (nr/δ))

Number of rounds

Number of rounds = number of successful
rounds (L) + number of corrupted rounds (say x)

Round size increases with index and adversary
pays Θ of what we pay, so t(x) ≤ T.

This gives x = O(T/ log (nT/δ)).

So, total number of rounds = L + O(T/ log (nT/δ))

Number of rounds

Recall O(∑ log (nr/d)) bits sent over all rounds

O(∑ log (nr/d)) for r = 1 to L + O(T/log (nT/δ))

So total bits sent is O(L log (n(L+T)/δ) + T)

Number of bits sent

Backup slides

Larger messages in π
Let α be the average message size in π

We show L’ = O(L/α log (n(L+T)/δ) + T)

Probability of success is at least 1 - δ

If α is large, then L’ = O(L+T)

Constant above optimal!

Idea: Break longer message
into smaller “chunks”

Question: What is a good
chunk size?

Solution: Chunk size in round r
= O(log (nr/δ))

Constant blowup in word size.

Our Algorithm - Arbitrary
message size in π
For every pair of users (say Alice and Bob):

If Alice has a message m for Bob:

While m is not completely sent :

 m' <—- next O(log (nr/δ)) bits of m

 Alice asks Bob for a key, and sends her key k1 along.

 Bob replies with his key k2 along with k1’.

 If k1’=k1, Alice sends ((m’,b),k2) to Bob. Else, she starts over.

 If received correctly, Bob is done and remains silent. Interprets m as a

 resend if b is unchanged, else a fresh message.

 Else he sends noise.

 If noise, Alice sends m’ again. Else, she is done.

EC
C

, A
M

D

en
co

de
d.

Ap

pe
nd

ed
 w

ith

 ra
nd

om
 b

its
.

Since the union bound in probability of
failure remains unchanged, the probability
of failure is still at most δ.

Pr (F) ≤ ∑1 ≤ i,j ≤ n ∑1 ≤ k ≤ 4 ∑r ≥ 1 Pr (Fi,j,k,r)

Number of bits sent
Step 1 : Compute maximum word size in π’

Step 2 : Compute average per-bit blowup

Step 3 : Compute average number of bits sent

Maximum word size in π’

Index of last round = L + O(T / log (nT/δ))

Word size in round r = O(log (nr/δ))

Thus, maximum word size = O(log n(L+T)/δ)

Average per-bit blowup
wmax = max word length = O(log n(L+T)/δ)

Maximum number of uncoded bits of π in a word =
log (nr/δ)

Let c = wmax / log (nr/δ) be a constant.

Assume π has μ messages of lengths L₁, …, Lμ.

Since ∑1 ≤ i ≤ μ Lᵢ = L, it follows that μ = L/α

Average per-bit blowup

Let bi,t = t-th bit of Lᵢ

Blowup associated with bi,t = 4 wmax / Lᵢ

If Lᵢ > log (n(L+T)/δ), then this blowup is at most 8c.

Thus, blowup for bi,t = max (8c, 4 wmax / Lᵢ)

Average per-bit blowup
We now bound the expected value of max (8c,
4wmax / Lᵢ) over choosing i with probability
proportional to Lᵢ.

Note : max (8c, 4wmax / Lᵢ) is convex in Lᵢ.

Thus, expectation is maximized when all but one of
the Lᵢ’s is 1.

Average per-bit blowup

Thus, we have μ -1 single bit messages. Hence, size
of biggest message = L(α -1)/α + 1

Thus, expected blowup per bit = O(Blowup
associated with bi,t = O(wmax / α)

which is the same as O(1/α log n(L+T)/δ)

Expected number of bits
Expected per-bit blowup in π’ = O(1/α log n(L+T)/δ)

Maximum number of bits in π = L

Thus, expected number of bits in π’ = O(L/α log
n(L+T)/δ) + (cost of corrupted rounds = O(T))

Final result
Let α be the average message size in π. We do not assume α
is known apriori.

Then, for any given δ ∈ (0,1)

 L’ = O(L/α log (n(L+T)/δ) + T)

Probability of success is at least 1 - δ

If α is large, then L’ = O(L+T) <—— Constant above optimal!

Dani et al. ‘15
2 players

Private Channel

An adversary flips T bits

T is unknown in advance

L’ = L + O (√(L(T+1)log L) + T)

Succeeds with high probability in L

