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Error Correction
Shannon

Information Theory & Entropy 

Random Errors 

Hamming

Hamming Bound (aka Sphere-Packing 
Bound) 

Adversarial Errors



Richard Hamming

"And so I said, 'Damn it, if the machine can 
detect an error, why can't it locate the position 
of the error and correct it?'"



How can we compute over a noisy channel? 

Our Problem



Texting with Noise

Alice, Bob & Carol have personal 
preferences for what they want to eat 

The run a protocol to find a place that is 
mutually desirable 

Today they have a noisy connection



Alice wants 
liquid kale

Sushi? Smoothie?

Alice wants 
liquid ale

“Swan in 
Rushes” Pub?

“Swan in 
Rushes” Pub?

“Swan in 
Rushes” Pub?

No. Sushi! No. Sushi! No. Sushi!

k LOLk LOLk LOL



The Problem
Given a protocol π 

π sends L bits over noise-free channels 

Create a new protocol π’ 

π’ sends L’ bits over noisy channels 

Goal: L’ is small function of L



Time

Local computation is instantaneous 

Time is divided into (channel) steps 

In each step, can send one bit over a 
channel 

Goal: Minimize steps



Why Hard?
Assume  

Alice and Bob just send 1 bit back and 
forth in π 

Then 

Naive use of ECC requires advance 
knowledge of noise rate for each 
transmission



Schulman ‘96

π takes L steps over noise-free channel 

Only two players 

An adversary flips < ε (1/240) fraction of bits 

Channels are public 

Result: Can create protocol π’ so L’ = θ (L)



Subsequent work: n-players
Much prior work assumes either: 

There is a coordinating node connected to 
all players; or 

Network topology is known to all players.

This talk: focus on case where the network 
topology is arbitrary and unknown in advance 

Additionally assume that π is asynchronous



[Censor-Hillel, Gelles, Haeupler ’17]
L and T are known in advance 

All channels are public 

π is asynchronous 

π’ is asynchronous; adversary can’t insert/delete 
messages

Tolerates O(1/n) fraction corruptions, sends O(L n log² n) 
bits 

O(1/n) noise tolerance is optimal with public channels



Asynchronous π

Messages delivered intermittently 

Players have no clocks

XXX

Why necessary?



Our Model

Adversary knows π, and our encoding algorithm 

Adversary doesn’t know local random bits, or 
bits sent on channel i.e. private channels 

Adversary selects location of bits to flip 

π is asynchronous; π’ is synchronous
Can also handle π’ asynchronous & adversary can’t 
insert/delete messages



Why Private Channels?
If adversary knows bits, then 

Adversary flips bits from Alice to Bob 

Convinces Bob that protocol π₁ is being 
run rather than protocol π₂ 

Succeeds since can flip any number of 
bits



Our Result

Succeeds with probability 1 - δ, for δ>0 

Sends O(L log (n(L+T)/δ) + T)  bits

L and T are unknown in advance 

All channels are private

α = average message size in π 

Total bits sent: O(L (1 +1/α log (n(L+T)/δ)) + T)



Algorithm Overview



Problem: Message Corruption



Solution: Algebraic Manipulation 
Detection (AMD) Codes

[Cramer et al. ’08]



AMD Codes
Encode a message m into a message m’ 

Any bit flipping of m’ is detected with probability 
1 - δ 

|m’| = |m| + O(log 1/δ) 

N.B.: Works only with private channels!



Problem 2: Bit Blowup

Problem: Adversary flips one bit, we must 
resend log bits 

Solution: Make the adversary corrupt 
constant fraction of bits to trigger a resend 

Using ECCs, can require adversary to 
corrupt 1/3 of the bits to trigger resend



Other Problems
Problem: Don’t know L and T 

Solution: Increase encoding strength over time

Problem: Differentiating message resend and 
repeated message 

Solution: Use a message number parity bit

Problem: Adversary installs messages during 
channel silence 

Solution: Use session keys



Algorithm
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

Alice asks Bob for a key, and sends her key k1 along. 

Bob replies with his key k2 along with k1’. 

If k1’=k1, Alice sends ((m,b),k2) to Bob. Else, she starts over. 

If received correctly, Bob is done and remains silent. Interprets m 
as a resend if b is unchanged, else a fresh message. 

Else he sends noise. 

If noise, Alice starts over. Else, she is done.
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(k2,k1)

(m,k2)

……

“My key is k1.  
What’s yours?”



Conclusion



An Application
Alice wants to send L bit message to Bob 

Connected via a private channel 

Neither knows T, Bob does not know L

Result: Succeeds with error probability 1/poly(L), 
sends expected 

L + O(T + min((T+1)log L, L log L)

Only L + O(log L) bits sent when T = O(1)



Can we match the L + O(T) lower bound? 

Asynchronous π’ with adversarial insertions? 

Can we unify node faults and edge faults into 
one grand model?

Future Work



Questions?



Algorithm Overview



First Algorithm
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

Alice sends m to Bob. 

If received correctly, Bob is done and 
remains silent. Else he sends noise. 

If noise, Alice starts over. Else, she is done.
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Problem: Sleeping Players



zzz

……

m

Problem: Adversary installs a 
message while Alice sleeps



Solution: Keys



k

(m,k)

……

“Key Please”



Problem: Sleeping Bob



zzz

k

(m,k)

……

“Key Please”

Problem: Alice thinks Bob received 
the message, but he didn't



Solution: Keys for Everyone



(k2,k1)

(m,k2)

……

“My key is k1.  
What’s yours?”



Algorithm with Keys
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

Alice asks Bob for a key, and sends her key k1 along. 

Bob replies with his key k2, along with k1’. 

If k1’=k1, Alice sends (m,k2) to Bob. Else, she starts over. 

If received correctly, Bob is done and remains silent. Else 
he sends noise. 

If noise, Alice starts over. Else, she is done.
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How long should keys be? 

If key length is logarithmic in L, T and n, 
then adversary can never guess a key 

Cost?  

Say m is always 1 bit 

Then get logarithmic blowup



Problem: Don’t know L and T!

Solution: Increase key size slowly over time 

Probability of correct guess decreases 
exponentially with key length 

Thus, can keep key bits small

Same holds for AMD encoding strength!



Problem 1: Forging Silence 

Adversary “silences out” communication



Solution: Make silence hard 
to forge



Silence
A b-bit string is silence if it has less than 
b/3 bit alternations 

Append logarithmic number of random 
bits to each word 

Pr (“silencing” these random bits) is 
exponentially small



Modified Algorithm - Add 
random bits
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

Alice asks Bob for a key, and sends her key k1 along. 

Bob replies with his key k2 along with k1’. 

If k1’=k1, Alice sends (m,k2) to Bob. Else, she starts over. 

If received correctly, Bob is done and remains silent. Else 
he sends noise. 

If noise, Alice starts over. Else, she is done.

EC
C

, A
M

D
  

en
co

de
d.

  
Ap

pe
nd

ed
 w

ith
 

 ra
nd

om
 b

its
.



Problem 2: Duplicate messages 

Bob thinks that a resend is a fresh message



Solution: Message parity bit 

Append j-th message from Alice to 
Bob with (j mod 2) 

This bit remains same throughout 
resends



Final Algorithm
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

Alice asks Bob for a key, and sends her key k1 along. 

Bob replies with his key k2 along with k1’. 

If k1’=k1, Alice sends ((m,b),k2) to Bob. Else, she starts over. 

If received correctly, Bob is done and remains silent. Interprets m 
as a resend if b is unchanged, else a fresh message. 

Else he sends noise. 

If noise, Alice starts over. Else, she is done.
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Analysis Sketch



Hamming

“Shortly before the first field test … a man asked 
me to check some arithmetic he had done, and I 
agreed, thinking to fob it off on some 
subordinate. When I asked what it was, he said, 
‘It is the probability that the test bomb will ignite 
the whole atmosphere.’ I decided I would check 
it myself!”



Correctness of Simulation
Alice initiates send of m to Bob in π’: 

(1) She finishes sending m in some round 

(2) Either Bob receives m, or he is in a 
termination state in π

For every message m that Bob receives, 
Alice must have sent m



Probability of success



Round Sizes
Each round is 4 words long 

In round r, 

Words are of length O(log (nr/δ)) 

=> Round size is O(log (nr/δ)) 

Bob updates his round size similarly 



Failure Events

Failure of AMD Codes 

Forging Silence 

Impersonation

Sushi?   —————>   Smoothie? 
              

         

…        —————> Smoothie?

Sushi?   —————>   … 
              

         



1) On any of the 4 words in a given round 

2) On any of the channels between n² 
pairs of users in a given round 

3) In any round before termination

Failure Events can happen:



Failure of AMD Codes
In round r, set AMD encoding strength to      
(n π r)⁻² δ/2 

Then,  

Pr (F) ≤ ∑1 ≤ i,j ≤ n  ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/2 ≤ δ/3 



Forging Silence
In round r, number of random bits in each word 
is 38 log (2 π n r / √δ) 

Probability of converting to silence ≤ (n π r)⁻² δ/4 

Thus,  
Pr (F) ≤ ∑1 ≤ i,j ≤ n  ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/4 ≤ δ/6 ≤ 
δ/3



Impersonation
In round r, keys in each word have length                    
2 log (4 π n r / √δ) 

So probability of guessing a key ≤ (n π r)⁻² δ/16 

Thus,  
Pr (F) ≤ ∑1 ≤ i,j ≤ n  ∑1 ≤ k ≤ 4 ∑r ≥ 1 (n π r)⁻² δ/16 ≤ δ/24 
≤ δ/3



Failure probability

Union bound over the three failure 
events 

Total failure probability                             
≤ δ/3 + δ/3 + δ/3 = δ 



Number of bits sent



Recall : 

To corrupt a message of size ℓ, adversary 
spends Θ(ℓ). 

We consider only the rounds that are 
successful 

Additional cost will be O(T)



Number of bits sent

In round r ≥ 1, four codewords each of length 
O(log (nr/δ)) 

O(∑ log (nr/δ)) bits sent over all rounds

How many rounds?



Let t(r) be the time at which round r begins. 

t(r+1) = t(r) + O(log (nr/δ)) 

which gives t(r) = O(r log (nr/δ)) 

Number of rounds



Number of rounds = number of successful 
rounds (L) + number of corrupted rounds (say x) 

Round size increases with index and adversary 
pays Θ of what we pay, so t(x) ≤ T. 

This gives x = O(T/ log (nT/δ)). 

So, total number of rounds = L + O(T/ log (nT/δ))

Number of rounds



Recall O(∑ log (nr/d)) bits sent over all rounds 

O(∑ log (nr/d)) for r = 1 to L + O(T/log (nT/δ)) 

So total bits sent is O(L log (n(L+T)/δ) + T)

Number of bits sent



Backup slides 



Larger messages in π
Let α be the average message size in π 

We show L’ = O(L/α log (n(L+T)/δ) + T) 

Probability of success is at least 1 - δ 

If α is large, then L’ = O(L+T) 

Constant above optimal!



Idea: Break longer message 
into smaller “chunks”



Question: What is a good 
chunk size?



Solution: Chunk size in round r 
= O(log (nr/δ))

Constant blowup in word size.



Our Algorithm - Arbitrary 
message size in π
For every pair of users (say Alice and Bob): 

If Alice has a message m for Bob: 

While m is not completely sent : 

   m' <—- next O(log (nr/δ)) bits of m 

       Alice asks Bob for a key, and sends her key k1 along. 

       Bob replies with his key k2 along with k1’. 

       If k1’=k1, Alice sends ((m’,b),k2) to Bob. Else, she starts over. 

       If received correctly, Bob is done and remains silent. Interprets m as a  

                                           resend if b is unchanged, else a fresh message. 

       Else he sends noise. 

       If noise, Alice sends m’ again. Else, she is done.
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Since the union bound in probability of 
failure remains unchanged, the probability 
of failure is still at most δ.

Pr (F) ≤ ∑1 ≤ i,j ≤ n  ∑1 ≤ k ≤ 4 ∑r ≥ 1 Pr (Fi,j,k,r)



Number of bits sent
Step 1 : Compute maximum word size in π’ 

Step 2 : Compute average per-bit blowup 

Step 3 : Compute average number of bits sent 



Maximum word size in π’

Index of last round = L + O(T / log (nT/δ)) 

Word size in round r = O(log (nr/δ)) 

Thus, maximum word size = O(log n(L+T)/δ)



Average per-bit blowup
wmax = max word length = O(log n(L+T)/δ) 

Maximum number of uncoded bits of π in a word = 
log (nr/δ) 

Let c = wmax / log (nr/δ) be a constant. 

Assume π has μ messages of lengths L₁, …, Lμ.  

Since ∑1 ≤ i ≤ μ Lᵢ = L, it follows that μ = L/α 



Average per-bit blowup

Let bi,t = t-th bit of Lᵢ 

Blowup associated with bi,t = 4 wmax / Lᵢ 

If Lᵢ > log (n(L+T)/δ), then this blowup is at most 8c. 

Thus, blowup for bi,t = max (8c, 4 wmax / Lᵢ) 



Average per-bit blowup
We now bound the expected value of max (8c, 
4wmax / Lᵢ) over choosing i with probability 
proportional to Lᵢ. 

Note : max (8c, 4wmax / Lᵢ) is convex in Lᵢ. 

Thus, expectation is maximized when all but one of 
the Lᵢ’s is 1.



Average per-bit blowup

Thus, we have μ -1 single bit messages. Hence, size 
of biggest message = L(α -1)/α + 1 

Thus, expected blowup per bit = O(Blowup 
associated with bi,t = O(wmax  / α) 

which is the same as O(1/α log n(L+T)/δ)



Expected number of bits
Expected per-bit blowup in π’ = O(1/α log n(L+T)/δ) 

Maximum number of bits in π = L 

Thus, expected number of bits in π’ = O(L/α log 
n(L+T)/δ) + (cost of corrupted rounds = O(T)) 



Final result
Let α be the average message size in π. We do not assume α 
is known apriori. 

Then, for any given δ ∈ (0,1) 

                    L’ = O(L/α log (n(L+T)/δ) + T) 

Probability of success is at least 1 - δ 

If α is large, then L’ = O(L+T)  <—— Constant above optimal!











Dani et al. ‘15
2 players 

Private Channel

An adversary flips T bits 

T is unknown in advance 

L’ = L + O (√(L(T+1)log L) + T) 

Succeeds with high probability in L


