
Privacy-Preserving Analytics:
The Browser nightmares

Hamed Haddadi

@realhamed

MSN 2019

https://haddadi.github.io/

Disclaimers

• The views presented here are personal and do not present
those of any browser vendor

• The architecture discussions, where not published, are
presented solely for the purpose of discussions within the
attendees.

Crash Reports vs. Telemetry

The modern browser is like a dynamic operating system.

An evolving jungle of content, style, third party code, analytics,
advertising, tracking, personalisation, extensions, permissions, etc…

Bug/crash reports are not enough for working out when things go
wrong

Regular “telemetry” reports need to be collected from a variety of
the above signals.

However telemetry and tracking/fingerprinting go hand in hand….

Chrome, attempt 1 (CCS’14)
RAPPOR: Randomized Aggregatable Privacy-Preserving

Ordinal Response

Úlfar Erlingsson
Google, Inc.

ulfar@google.com

Vasyl Pihur
Google, Inc.

vpihur@google.com

Aleksandra Korolova
University of Southern California

korolova@usc.edu

ABSTRACT
Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse, or RAPPOR, is a technology for crowdsourcing statis-
tics from end-user client software, anonymously, with strong
privacy guarantees. In short, RAPPORs allow the forest of
client data to be studied, without permitting the possibil-
ity of looking at individual trees. By applying randomized
response in a novel manner, RAPPOR provides the mecha-
nisms for such collection as well as for e�cient, high-utility
analysis of the collected data. In particular, RAPPOR per-
mits statistics to be collected on the population of client-side
strings with strong privacy guarantees for each client, and
without linkability of their reports.

This paper describes and motivates RAPPOR, details its
di↵erential-privacy and utility guarantees, discusses its prac-
tical deployment and properties in the face of di↵erent attack
models, and, finally, gives results of its application to both
synthetic and real-world data.

1 Introduction
Crowdsourcing data to make better, more informed deci-
sions is becoming increasingly commonplace. For any such
crowdsourcing, privacy-preservation mechanisms should be
applied to reduce and control the privacy risks introduced
by the data collection process, and balance that risk against
the beneficial utility of the collected data. For this purpose
we introduce Randomized Aggregatable Privacy-Preserving
Ordinal Response, or RAPPOR, a widely-applicable, practi-
cal new mechanism that provides strong privacy guarantees
combined with high utility, yet is not founded on the use of
trusted third parties.

RAPPOR builds on the ideas of randomized response, a
surveying technique developed in the 1960s for collecting
statistics on sensitive topics where survey respondents wish
to retain confidentiality [27]. An example commonly used
to describe this technique involves a question on a sensi-
tive topic, such as “Are you a member of the Communist
party?” [28]. For this question, the survey respondent is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/authors. Copyright is held by the authors.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
ACM 978-1-4503-2957-6/14/11, http://dx.doi.org/10.1145/2660267.2660348.

asked to flip a fair coin, in secret, and answer “Yes” if it
comes up heads, but tell the truth otherwise (if the coin
comes up tails). Using this procedure, each respondent re-
tains very strong deniability for any “Yes” answers, since
such answers are most likely attributable to the coin coming
up heads; as a refinement, respondents can also choose the
untruthful answer by flipping another coin in secret, and get
strong deniability for both “Yes” and “No” answers.

Surveys relying on randomized response enable easy com-
putations of accurate population statistics while preserving
the privacy of the individuals. Assuming absolute compli-
ance with the randomization protocol (an assumption that
may not hold for human subjects, and can even be non-
trivial for algorithmic implementations [23]), it is easy to
see that in a case where both “Yes” and “No” answers can
be denied (flipping two fair coins), the true number of “Yes”
answers can be accurately estimated by 2(Y � 0.25), where
Y is the proportion of “Yes” responses. In expectation, re-
spondents will provide the true answer 75% of the time, as
is easy to see by a case analysis of the two fair coin flips.

Importantly, for one-time collection, the above random-
ized survey mechanism will protect the privacy of any spe-
cific respondent, irrespective of any attacker’s prior knowl-
edge, as assessed via the ✏-di↵erential privacy guarantee [12].
Specifically, the respondents will have di↵erential privacy at
the level ✏ = ln

�
0.75/(1 � 0.75)

�
= ln(3). This said, this

privacy guarantee degrades if the survey is repeated—e.g.,
to get fresh, daily statistics—and data is collected multiple
times from the same respondent. In this case, to maintain
both di↵erential privacy and utility, better mechanisms are
needed, like those we present in this paper.

Privacy-Preserving Aggregatable Randomized Response,
or RAPPORs, is a new mechanism for collecting statistics
from end-user, client-side software, in a manner that pro-
vides strong privacy protection using randomized response
techniques. RAPPOR is designed to permit collecting, over
large numbers of clients, statistics on client-side values and
strings, such as their categories, frequencies, histograms, and
other set statistics. For any given value reported, RAPPOR
gives a strong deniability guarantee for the reporting client,
which strictly limits private information disclosed, as mea-
sured by an ✏-di↵erential privacy bound, and holds even for
a single client that reports often on the same value.

A distinct contribution is RAPPOR’s ability to collect
statistics about an arbitrary set of strings by applying ran-
domized response to Bloom filters [5] with strong ✏-di↵erential
privacy guarantees. Another contribution is the elegant
manner in which RAPPOR protects the privacy of clients

Bloom filter bits

Participant 8456 in cohort 1

1 8 32 64 128 256

"The number 68"

||
4 signal bits

||
69 bits on

||
145 bits on

True value:

Bloom filter (B):

Fake Bloom
 filter (B'):

Report sent
 to server:

0 1

Figure 1: Life of a RAPPOR report: The client value of the string “The number 68” is hashed onto the Bloom
filter B using h (here 4) hash functions. For this string, a Permanent randomized response B

0 is produces and
memoized by the client, and this B

0 is used (and reused in the future) to generate Instantaneous randomized
responses S (the bottom row), which are sent to the collecting service.

To provide such strong privacy guarantees, the RAPPOR
algorithm implements two separate defense mechanisms, both
of which are based on the idea of randomized response and
can be separately tuned depending on the desired level of
privacy protection at each level. Furthermore, additional
uncertainty is added through the use of Bloom filters which
serve not only to make reports compact, but also to compli-
cate the life of any attacker (since any one bit in the Bloom
filter may have multiple data items in its pre-image).

The RAPPOR algorithm takes in the client’s true value v

and parameters of execution k, h, f, p, q, and is executed lo-
cally on the client’s machine performing the following steps:

1. Signal. Hash client’s value v onto the Bloom filter B
of size k using h hash functions.

2. Permanent randomized response. For each client’s
value v and bit i, 0 i < k in B, create a binary re-
porting value B

0
i which equals to

B
0
i =

8
><

>:

1, with probability 1
2f

0, with probability 1
2f

Bi, with probability 1� f

where f is a user-tunable parameter controlling the
level of longitudinal privacy guarantee.

Subsequently, this B
0 is memoized and reused as the

basis for all future reports on this distinct value v.

3. Instantaneous randomized response. Allocate a
bit array S of size k and initialize to 0. Set each bit i

in S with probabilities

P (Si = 1) =

(
q, if B0

i = 1.

p, if B0
i = 0.

4. Report. Send the generated report S to the server.

There are many di↵erent variants of the above randomized
response mechanism. Our main objective for selecting these

two particular versions was to make the scheme intuitive and
easy to explain.

The Permanent randomized response (step 2) replaces the
real value B with a derived randomized noisy value B

0. B
0

may or may not contain any information about B depend-
ing on whether signal bits from the Bloom filter are being
replaced by random 0’s with probability 1

2f . The Perma-
nent randomized response ensures privacy because of the
adversary’s limited ability to di↵erentiate between true and
“noisy” signal bits. It is absolutely critical that all future
reporting on the information about B uses the same ran-
domized B

0 value to avoid an “averaging” attack, in which
an adversary estimates the true value from observing multi-
ple noisy versions of it.

The Instantaneous randomized response (step 3) plays
several important functions. Instead of directly reporting
B

0 on every request, the client reports a randomized version
of B0. This modification significantly increases the di�culty
of tracking a client based on B

0, which could otherwise be
viewed as a unique identifier in longitudinal reporting sce-
narios. It also provides stronger short-term privacy guaran-
tees (since we are adding more noise to the report) which can
be independently tuned to balance short-term vs long-term
risks. Through tuning of the parameters of this mechanism
we can e↵ectively balance utility against di↵erent attacker
models.

Figure 1 shows a random run of the RAPPOR algorithm.
Here, a client’s value is v = “68”, the size of the Bloom fil-
ter is k = 256, the number of hash functions is h = 4, and
the tunable randomized response parameters are: p = 0.5,
q = 0.75, and f = 0.5. The reported bit array sent to the
server is shown at the bottom of the figure. 145 out of 256
bits are set in the report. Of the four Bloom filter bits in B

(second row), two are propagated to the noisy Bloom filter
B

0. Of these two bits, both are turned on in the final report.
The other two bits are never reported on by this client due
to the permanent nature of B0. With multiple collections
from this client on the value“68”, the most powerful attacker
would eventually learn B

0 but would continue to have lim-

• RAPPOR gracefully handles multiple data collections from the same client by providing well-
defined longitudinal differential privacy guarantees.

• Highly tunable parameters allow to balance risk versus utility over time, depending on one’s
needs and assessment of likelihood of different attack models.

• RAPPOR is purely a client-based privacy solution. It eliminates the need for a trusted third- party
server and puts control over client’s data back into their own hands.

Differential Privacy of the Instantaneous Randomized Response

Figure 4: Simulations of learning the normal distribution with mean 50 and standard deviation 10. The
RAPPOR privacy parameters are q = 0.75 and p = 0.5, corresponding to ✏ = ln(3). True sample distribution
is shown in black; light green shows the estimated distribution based on the decoded RAPPOR reports. We
do not assume a priori knowledge of the Normal distribution in learning. If such prior information were
available, we could significantly improve upon learning the shape of the distribution via smoothing.

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

1 100 200

Detected

Not−detected

Figure 5: Population of strings with their true fre-
quencies on the vertical axis (0.01 is 1%). Strings
detected by RAPPOR are shown in dark red.

p-values show high confidence in our assessment that the
true counts are much larger than 0 and, in fact, comparing
columns 2 and 5 confirms that. Figure 5 shows all 47 de-
tected strings in dark red. All common strings above the
frequency of approximately 1% were detected and the long
tail remained protected by the privacy mechanism.

5.3 Reporting on Windows Process Names
We collected 186,792 reports from 10,133 di↵erent Windows
computers, sampling actively running processes on each ma-
chine. On average, just over 18 process names were collected
from each machine with the goal of recovering the most com-
mon ones and estimating the frequency of a particularly ma-
licious binary named “BADAPPLE.COM”.

String Est. Stdev P.value Truth Prop. SNR
V 1 48803 2808 5.65E-63 49884 0.05 17.38
V 2 47388 2855 5.82E-58 47026 0.05 16.60
V 5 41490 2801 4.30E-47 40077 0.04 14.81
V 7 40682 2849 4.58E-44 36565 0.04 14.28
V 4 40420 2811 1.31E-44 42747 0.04 14.38
V 3 39509 2882 7.03E-41 44642 0.04 13.71
V 8 36861 2842 5.93E-37 34895 0.03 12.97
V 6 36220 2829 4.44E-36 38231 0.04 12.80
V 10 34196 2828 1.72E-32 31234 0.03 12.09
V 9 32207 2805 1.45E-29 33106 0.03 11.48
V 12 30688 2822 9.07E-27 28295 0.03 10.87
V 11 29630 2831 5.62E-25 29908 0.03 10.47
V 14 27366 2850 2.33E-21 25984 0.03 9.60
V 19 23860 2803 3.41E-17 20057 0.02 8.51
V 13 22327 2826 4.69E-15 26913 0.03 7.90
V 15 21752 2825 2.15E-14 24653 0.02 7.70
V 20 20159 2821 1.26E-12 19110 0.02 7.15
V 18 19521 2835 7.74E-12 20912 0.02 6.89
V 17 18387 2811 7.86E-11 22141 0.02 6.54
V 21 18267 2828 1.33E-10 17878 0.02 6.46

Table 1: Top-20 strings with their estimated fre-
quencies, standard deviations, p-values, true counts
and signal to noise ratios (SNR or z-scores).

This collection used 128 Bloom filter with 2 hash func-
tions and 8 cohorts. Privacy parameters were chosen such
that ✏1 = 1.0743 with q = 0.75, p = 0.5, and f = 0.5.
Given this configuration, we optimistically expected to dis-
cover processes with frequency of at least 1.5%.

We identified 10 processes shown in Table 2 ranging in
frequency between 2.5% and 4.5%. They were identified by
controlling the False Discovery Rate at 5%. The “BADAP-
PLE.COM”process was estimated to have frequency of 2.6%.
The other 9 processes were commonWindows tasks we would
expect to be running on almost every Windows machine.

So, what’s the issue?
• Too good? Utility can go down? “…. there are strict limits to the

utility of locally-differentially-private analyses. Because each
reporting individual performs independent coin flips, any analysis
results are perturbed by noise induced by the properties of the
binomial distribution.“

• Niche/unique cases will be ignored? “… best suited for measuring
the most frequent elements in data from peaky power-law
distributions..“

• Hard to navigate through changes: “.. opaque, fixed, and statistical
nature of the data collected. Not only does this prevent exploratory
data analysis and any form of manual vetting, but it also ren- ders
the reported data incompatible with the existing tools and processes
of standard engineering practice. “

Chrome, attempt 2 (SOSP’17)
PROCHLO: Strong Privacy for Analytics in the Crowd

Andrea Bittau? Úlfar Erlingsson? Petros Maniatis? Ilya Mironov? Ananth Raghunathan?

David Lie‡ Mitch Rudominer� Ushasree Kode� Julien Tinnes� Bernhard Seefeld�

?Google Brain ‡Google Brain and U. Toronto �Google

Abstract
The large-scale monitoring of computer users’ software
activities has become commonplace, e.g., for application
telemetry, error reporting, or demographic profiling. This
paper describes a principled systems architecture—Encode,
Shuffle, Analyze (ESA)—for performing such monitoring
with high utility while also protecting user privacy. The ESA
design, and its PROCHLO implementation, are informed by
our practical experiences with an existing, large deployment
of privacy-preserving software monitoring.

With ESA, the privacy of monitored users’ data is guaran-
teed by its processing in a three-step pipeline. First, the data
is encoded to control scope, granularity, and randomness.
Second, the encoded data is collected in batches subject to
a randomized threshold, and blindly shuffled, to break linka-
bility and to ensure that individual data items get “lost in the
crowd” of the batch. Third, the anonymous, shuffled data is
analyzed by a specific analysis engine that further prevents
statistical inference attacks on analysis results.

ESA extends existing best-practice methods for sensitive-
data analytics, by using cryptography and statistical tech-
niques to make explicit how data is elided and reduced in
precision, how only common-enough, anonymous data is an-
alyzed, and how this is done for only specific, permitted pur-
poses. As a result, ESA remains compatible with the estab-
lished workflows of traditional database analysis.

Strong privacy guarantees, including differential pri-
vacy, can be established at each processing step to defend
against malice or compromise at one or more of those steps.
PROCHLO develops new techniques to harden those steps,
including the Stash Shuffle, a novel scalable and efficient
oblivious-shuffling algorithm based on Intel’s SGX, and new
applications of cryptographic secret sharing and blinding.
We describe ESA and PROCHLO, as well as experiments
that validate their ability to balance utility and privacy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

SOSP ’17, October 28, 2017, Shanghai, China

c� 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10. . .

DOI: https://doi.org/10.1145/3132747.3132769
Reprinted from SOSP ’17,, [Unknown Proceedings], October 28, 2017, Shanghai, China, pp. 1–19.

1. Introduction
Online monitoring of client software behavior has long been
used for disparate purposes, such as measuring feature adop-
tion or performance characteristics, as well as large-scale
error-reporting [34]. For modern software, such monitoring
may entail systematic collection of information about client
devices, their users, and the software they run [17, 60, 69].
This data collection is in many ways fundamental to modern
software operations and economics, and provides many clear
benefits, e.g., it enables the deployment of security updates
that eliminate software vulnerabilities [62].

For such data, the processes, mechanisms, and other
means of privacy protection are an increasingly high-profile
concern. This is especially true when data is collected au-
tomatically and when it is utilized for building user profiles
or demographics [21, 69, 71]. Regrettably, in practice, those
concerns often remain unaddressed, sometimes despite the
existence of strong incentives that would suggest otherwise.
One reason for this is that techniques that can guarantee pri-
vacy exist mostly as theory, as limited-scope deployments,
or as innovative-but-nascent mechanisms [5, 7, 25, 28].

We introduce the Encode, Shuffle, Analyze (ESA) archi-
tecture for privacy-preserving software monitoring, and its
PROCHLO implementation.1 The ESA architecture is in-
formed by our experience building, operating, and maintain-
ing the RAPPOR privacy-preserving monitoring system for
the Chrome Web browser [28]. Over the last 3 years, RAP-
POR has processed up to billions of daily, randomized re-
ports in a manner that guarantees local differential privacy,
without assumptions about users’ trust; similar techniques
have since gained increased attention [6,7,70,74]. However,
these techniques have limited utility, both in theory and in
our experience, and their statistical nature makes them ill-
suited to standard software engineering practice.

Our ESA architecture overcomes the limitations of sys-
tems like RAPPOR, by extending and strengthening current
best practices in private-data processing. In particular, ESA
enables any high-utility analysis algorithm to be compatible
with strong privacy guarantees, by appropriately building on
users’ trust assumptions, privacy-preserving randomization,

1 PROCHLO combines privacy with the Greek word óqloc for crowds.

1

Encode, Shuffle, Analyze
Somewhat surprisingly, if the set of reports can be parti-

tioned in the right manner, the utility of RAPPOR (and sim-
ilar systems) can be greatly enhanced by analyzing fewer re-
ports at once. By placing correlated data into the same parti-
tions, signal recovery can be facilitated, especially since the
square-root-based noise floor will be lower in each partition
than in the entire dataset.

In particular, the data required for the app/API example
above can be reduced by two orders of magnitude, if the
reported API is used to partition RAPPOR reports into 100
disjoint, separately-analyzed sets; for each separate API,
only 100 million reports are required to find the top 1000
apps, by the above arithmetic (see also §5.2’s experiment).

Unfortunately, such partitioning may greatly weaken pri-
vacy guarantees: differential privacy is fundamentally in-
compatible with the certain knowledge that an API was used,
let alone that a particular individual used that API [22, 32].
Therefore, any such partitioning must be done with great
care and in a way that adds uncertainty about each partition.

Another major obstacle to the practical use of locally-
differentially-private methods—based on our experiences
with RAPPOR—is the opaque, fixed, and statistical nature
of the data collected. Not only does this prevent exploratory
data analysis and any form of manual vetting, but it also ren-
ders the reported data incompatible with the existing tools
and processes of standard engineering practice. Even when
some users (e.g., of Beta or Developer software versions)
have opted into reporting more complete data, this data is
not easily correlated with other reports because it is not col-
lected via the same pipelines. In our experience, this is a
frustrating obstacle to developers, who have been unable to
get useful signals from RAPPOR analysis in a substantial
fraction of cases, due to the noise added for privacy, and the
difficulties of setting up monitoring and interpreting results.

Insights, Refinements, and Cryptographic Alternatives
The fundamental insight behind the ESA architecture is
that both of the above problems can be eliminated by
collecting individuals’ data through an intermediary, in a
unified pipeline. This intermediary (the ESA shuffler) ex-
plicitly manages data partitions (the ESA crowds), and
guarantees that each partition is sufficiently large and of
uncertain-enough size. This is done by batching and ran-
domized thresholding, which establishes differential privacy
and avoids the pitfalls of k-anonymity [22, 32, 33, 48]. Fur-
thermore, this intermediary can hide the origin of reports and
protect their anonymity—even when some are more detailed
reports from opt-in users—and still permit their unified anal-
ysis (e.g., as in Blender [6]). This anonymity is especially
beneficial when each individual sends more than one report,
as it can prevent their combination during analysis (cf. [70]).

ESA can be seen as a refinement of existing, natural
trust relationships and best practices for sensitive data an-
alytics, which assigns the responsibility for anonymity and
randomized thresholding to an independently-trusted, stan-

S

trust
boundary

A
Ea

Eb

Ec

a
a b

c

Σ{abc}~

trust
boundary

b

c

a

b

c

Figure 1: ESA architecture: Encode, shuffle, and analyze.

dalone intermediary. ESA relies on cryptography to de-
note trust, as well as to strengthen protection against dif-
ferent attack models, and to provide privacy guarantees even
for unique or highly-identifying report data. Those cryp-
tographic mechanisms—detailed in the remainder of this
paper—differ from the cryptography typically used to pro-
tect privacy for aggregated analysis (or for different pur-
poses, like Vuvuzela or Riposte private messaging [19, 72]).

Other cryptography-based privacy-protection systems,
such as PDDP, Prio, and Secure Aggregation [11, 15, 18],
mostly share ESA’s goals but differ greatly in their ap-
proach. By leveraging multiparty computations, they create
virtual trusted-third-party platforms similar to the central-
ized PINQ or FLEX systems, which support differentially-
private release of analysis results about user data [38, 52].
These approaches can improve user-data secrecy, but must
rely on added assumptions, e.g., about clients’ online avail-
ability, clients’ participation in multi-round protocols, and
attack models with an honest-but-curious central coordi-
nator. Also, in terms of practical adoption, these systems
require radical changes to engineering practice and share
RAPPOR’s obstacle of making user data overly opaque and
giving access only to statistics.

In comparison, ESA is compatible with existing, un-
changed software engineering practices, since the output
from the ESA shuffler can be gathered into databases that
have built-in guarantees of uncertainty and anonymity. Fur-
thermore, ESA offers three points of control for finding
the best balance of privacy and utility, and the best pro-
tections: local-differential privacy, at the client, randomized
thresholding and anonymity, at the privacy intermediary, and
differentially-private release, at the point of analysis.

3. The Encode-Shuffle-Analyze Architecture
The ESA architecture splits responsibility between en-
coders, shufflers, and analyzers, as shown in Figure 1.

Encoders run on the client devices of users, potentially
as part of the software being monitored. They can transform
the monitored data in a number of ways—in particular, by
converting its encoding—and they also use nested encryp-
tion to guarantee which parties process it and in what order.

4

Shuffler Enclave

a
Key1

b
Key1

c
Key1

b
Key2

a
Key2

c
Key2

Incoming Data Shuffled Data

abc bac

Figure 2: Primitive operation of an oblivious shuffler.

server of primitive shuffling operations gains no advantage
in recovering the resulting order compared to guessing at
random; this induces the security parameter, ✏, which is de-
fined as the total variation distance between the distribution
of shuffled items and the uniform distribution. Typical values
range from the bare minimum of ✏ = 1/N to a cryptograph-
ically secure ✏ = 2�128.

To be efficient, the shuffler must perform as few prim-
itive shuffling operations as possible, since each such op-
eration imposes memory overhead (to bring a subset into
private memory, and write it back out again), cryptographic
overhead (to decrypt with Key1 and re-encrypt with Key2),
and possibly network overhead, if multiple computers are
involved in running primitive shuffling operations.

4.1.3 State of the Art in Oblivious Shuffling
We attempted to find existing oblivious-shuffling mecha-
nisms that produced cryptographically-secure random per-
mutations with sufficient scalability and efficiency.

As described below, we found no SGX oblivious shuffling
mechanisms adequate to our purposes, leading to the design
and implementation of our own algorithm, the Stash Shuffle
(§4.1.4). In terms of scalability, our RAPPOR experience
shows that we must handle tens to hundreds of millions of
items, with at least 64 bytes of data and an 8-byte integer
crowd ID, each, which in PROCHLO corresponds to a 318-
byte doubly-encrypted record. In terms of efficiency, our
driving constraint came from the relative scarcity of SGX-
enabled CPUs in data centers, resulting from SGX’s current
deployment only as a per-socket (not per-core) feature of
client-class CPU realizations. We defined our metric for
efficiency in terms of the total amount of SGX-processed
data, relative to the size of the input dataset; thus, at 2⇥
efficiency SGX would read, decrypt, re-encrypt, and write
out to untrusted memory each input data item two times.

Oblivious sorting is one way to produce an oblivious
shuffle: associate a sufficiently-large random identifier (say
64 bits) with every item, by taking a keyed hash of the item’s
contents, and then use an oblivious sorting algorithm to sort
by that identifier. Then the resulting shuffled (sorted) order
of items will be as random as the choice of random identi-
fier. Oblivious sorting algorithms are sorting algorithms that

choose the items to compare and possibly swap (inside pri-
vate memory) in a data-independent fashion.

Batcher’s sort is one such algorithm [8]. Its primitive op-
eration reads two buckets of b consecutive items from an ar-
ray of N items, sorts them by a keyed item hash, and writes
them back to their original array position. While not restrict-
ing dataset size, Batcher’s sort requires N/2b⇥ (log2 N/b)2

such private sorting operations. With SGX, b can be at most
152 thousand 318-byte records. Thus, to apply Batcher’s sort
to 10 million records (a total of 3.1 GBytes), the data pro-
cessed will be 49⇥ the dataset size (155 GBytes); corre-
spondingly, for 100 million records (31 GBytes), the over-
head would be 100⇥ (3.1 TBytes). To complete this process-
ing within a reasonable time, at least each day, many SGX
machines would be required to parallelize the rounds of op-
erations: 33 machines for 10 million records, and 330 for
100 million—a very substantial commitment of resources
for these moderately small datasets.

ColumnSort is a more efficient, data-independent sort-
ing algorithm, improving on Batcher’s sort’s O((log2 N)2)
rounds and sorting datasets in just exactly 8 rounds [44].
Opaque uses SGX-based ColumnSort for private-data ana-
lytics [78]. Unfortunately, any system based on ColumnSort
has a maximum problem size that is induced by the per-
machine private-memory limit [14]. Thus, while Column-
Sort’s overhead is only 8⇥ the dataset size, it can at most
sort 118 million 318-byte records.

Sorting is a brute-force way to shuffle: instead of produc-
ing any unpredictable data permutation, it picks exactly one
unpredictable permutation and then sorts the data accord-
ingly. A bit further away from sorting lies the Melbourne
Shuffle algorithm [58]. It is fast and parallelizable, and has
been applied to privacy-data analytics in the cloud [57]. In-
stead of picking random identifiers for items and then sort-
ing them obliviously, the Melbourne shuffle picks a random
permutation, and then obliviously rearranges data to that or-
dering. This rearrangement uses data-independent manipu-
lations of the data array, without full sorting, which reduces
overhead. Unfortunately, this algorithm scales poorly, since
it requires access to the entire permuted ordering in private
memory. For SGX, this means that the Melbourne Shuffle
can handle only a few dozen million items, at most, even if
we ignore storage space for actual data, computation, etc.

Finally, instead of sorting, cascade-mix networks have
been proposed for oblivious shuffling (e.g., M2R [23]). With
SGX, such networks split the input data across SGX en-
claves, partitioned to fit in SGX private memory, and re-
distribute the data after random shuffling in each enclave. A
“cascade” of such mixing rounds can achieve any permuta-
tion, obliviously. Unfortunately, for a safe security parame-
ter ✏ = 2�64, a significant number of rounds is required [40].
For our running example, the overhead is 114⇥ for 10 mil-
lion 318-byte records, and 87⇥ for 100 million records.

9

Results are more promising
5.2 Vocab: Empirical Long-tail Distributions
We consider a corpus of three billion words that is represen-
tative of English-speaking on-line discussion boards. Char-
acteristically, the distribution follows the power-law (Zip-
fian) distribution with a heavy head and a long tail, which
poses a challenge for statistical techniques such as random-
ized response. To demonstrate PROCHLO’s utility into recov-
ering a stronger signal further into the tail of the distribution,
we performed the following four experiments to privately
learn word frequencies on samples of size 10K, 100K, 1M,
and 10M drawn from the same distribution. In each experi-
ment, we measured the number of unique words (which can
be thought of as unique candidate URLs or apps in other ap-
plications) we could recover through our analysis.

In experiment Crowd, clients send unencoded words
along with a hash of the word as the crowd ID to a single
shuffler. Against the analyzer, this hides all words that occur
infrequently and allows decoding of words whose frequency
is above the threshold. However, a malicious shuffler may
mount a dictionary attack on the words’ hashes, and there is
no privacy against the shuffler and analyzer colluding.

Experiment Secret-Crowd builds on Crowd, but clients
encode their reported words using one-out-of-t secret shar-
ing, setting t to be 20, like the shuffler’s crowd threshold T .
At a minimal computational cost to clients (less than 50 µs
per encoding), privacy is significantly improved: uncommon
words and strings drawn from hard-to-guess data sources
(such as private keys, hash values, love letters, etc.) are pri-
vate to the analyzer. Alas, the shuffler can mount dictionary
attacks and statistical inference on crowd IDs.

Experiment NoCrowd uses the same secret sharing as
Secret-Crowd, but uses the same, fixed crowd ID in all client
reports. This protects against a malicious shuffler, as it no
longer can perform statistical inference or dictionary attacks
on crowd ID word hashes. Also, this slightly improves utility
by avoiding the small noise added by the shuffler during
the thresholding step. However, lacking a crowd to hide
in, clients now have less protection against the analyzer: it
will now receive reports even of the most uncommonly-used
words, and can attempt brute-force attacks on them.

Experiment Blinded-Crowd offers the most compelling
privacy story. In addition to secret-share encoding of words,
clients use blinded crowd IDs, with two-shuffler randomized
thresholding (§4.3). Assuming no collusion, neither the shuf-
flers nor the analyzer can successfully perform attacks on
the secret-shared words or the blinded crowd IDs. Even if
all parties collude, private data from a hard-to-guess distri-
bution (such as keys and unique long-form text) will still be
protected by the secret-share encoding.

For each experiment, we compute a histogram and mea-
sure utility based on the number of unique words recovered
in the analysis. Finally, we compare PROCHLO with RAP-
POR [28] and its variant where collected reports are parti-
tioned by small crowd IDs a few bits long (see the discus-

10K 100K 1M 10M

100

101

102

103

104

105

4062

18665

57500
91260

46

578

5921
28821

#
of

un
iq

ue
w

or
ds

re
co

ve
re

d

32

371

3730

21972

17

222

828

2

15

122

240

Ground truth (no privacy)
NoCrowd (no DP, t=20)
⇤-Crowd ("=2 1

4 , �=10�6)
Partition ("=2 1

4 , �=10�6)
RAPPOR ("=2, �=0)

Figure 5: A log-log-graph of the number of unique words re-
covered (Y-axis) on samples of 10 thousand to 10 million Vocab
words (X-axis). Using results in The ⇤-Crowd line results from us-
ing word hashes as the crowd-IDs, whereas NoCrowd offers less
privacy, using a naı̈ve threshold of 20 and no crowds. For compari-
son, RAPPOR and Partition show how pure local-differential pri-
vacy offers far less accuracy and much higher variance (error bars)
even when augmented with partitions as described in §2.2.

sion of local differential privacy in §2.2). This translates to
between 4 and 256 partitions for the sample sizes in the ex-
periment. The results are summarized in Figure 5.

Several observations are in order. The experiment of-
fering the highest utility is NoCrowd which performs no
crowd-based thresholding, but also provides no differential
privacy guarantees, unlike the other experiments. Encourag-
ingly, the ⇤-Crowd experiments show the utility loss due to
noisy thresholding to be very small compared to NoCrowd.
Both experiments recover a large fraction of the ground-truth
number of unique words computed without any privacy.

The challenge of using randomized response for long-
tailed distributions is made evident by the RAPPOR results,
whose utility is less than 5% that of our PROCHLO exper-
iments. The Partition results also show that the limitations
of local differential privacy cannot be mitigated by follow-
ing §2.2. and partitioning based on word hashes. For the Vo-
cab dataset, and the studied sample sizes, partitioning im-
proves RAPPOR’s utility only by between 1.13⇥ to 3.45⇥,
at the cost of relaxing guarantees from 2-differential privacy
to (2.25, 10�6)-differential privacy.

Table 3 gives wall-clock running time for the Vocab ex-
periment across varying problem sizes. Performance was
measured on an 8-core 3.5 GHz Intel Xeon E5-1650 pro-
cessor with 32 GB RAM, with multiple processes commu-
nicating locally via gRPC [35]. We note that these numbers
demonstrate what we naturally expect in our system design:
performance scales linearly with the number of clients and
the dominating cost is public-key crypto operations (roughly
3, 6, and 2 operations for each column, respectively).

14

5.5 Flix: Collaborative Filtering
We next consider a prediction task without the strong local-
ity inherent to our good results for next-viewed content in
the previous section. This task is to infer users’ ratings for
content given the set of each user’s content ratings. Work
on this problem was supercharged by the $1M Netflix Prize
challenge for improving their proprietary recommender sys-
tem. Famously, Narayanan and Shmatikov [54] managed to
deanonymize users in the challenge’s large corpus of train-
ing data by exploiting auxiliary data and the linkability of
users’ movie preferences. Their successful attack led to the
cancellation of a followup competition.

We demonstrate that the ESA architecture permits collec-
tion of data that simultaneously satisfies dual (and dueling)
objectives of privacy and utility for collaborative filtering.
As in the previous example, sending a complete vector of
movie ratings exposes users to linking attacks. The equally
unsatisfying alternative is to guarantee privacy to all users
by randomizing their vectors client-side. Since the ratings
and the movies are sensitive information, both need to be
randomized, effectively destroying data utility.

To enable utility- and privacy-preserving collection of
data we identify sufficient statistics that can be assembled
from anonymized messages drawn from a small domain. We
observe that many of the most relevant analysis methods of
collaborative filtering comprise two distinct steps: (i) com-
puting the covariance matrix capturing item-to-item interac-
tions, and (ii) processing of that matrix, e.g., for factorization
or de-noising. Computation on the sensitive data of users’
movie ratings is performed only in the first step, which can
be supported by the ESA architecture, as described below.

Let the rating given to item i by user u be rui, the set
of items rated by user u be I(u) and the set of users who
rated item i be U(i). Towards the goal of evaluating the
covariance matrix we compute two intermediate item-by-
item matrices S and A defined as Sij = |U(i) \ U(j)|
and Aij =

P
u2U(i)\U(j) ruiruj . An approximation to the

covariance matrix is given by (Aij/Sij).
We describe how A is computed (S is treated anal-

ogously). By pivoting to users, we represent A as fol-
lows: Aij =

P
u

P
i,j2I(u) ruiruj . Thus, it is sufficient for

each user to send its contribution to A that consists of all
(i, rui, j, ruj) four-tuples where i, j 2 I(u) (by symmetry
only tuples where i j are needed).

Even though most four-tuples are unlikely to lead to re-
identification, a truly unique item-rating four-tuple could
allow linking all of the items of the contributing user. To
minimize this possibility we pursue three complementary
approaches. First, only a random set of four-tuples is sent
by each user, capped in cardinality. Second, users replace
a fixed fraction (10% in our experiments) of the movie
identifiers in their reports with a randomly sampled one
(this alone affords 2.2-differential privacy for the set of
rated movies). Third, each four-tuple (i, rui, j, ruj) is tagged

Movies # Users # Reports Score (RMSE)
no privacy PROCHLO

200 90K 1.77M 0.9579 0.9595†

2K 353K 335M 0.9414 0.9420
18K 480K 22.6B 0.9222 0.9242

Table 5: Utility of the Flix evaluation; lower numbers are
better. (†To account for sparsity, the threshold was set to 5.)

with two crowd IDs, one for (i, rui) and one for (j, ruj),
adding a layer of nested encryption and a second shuffler
to the pipeline. This way, each item-rating combination that
reaches the analysis server appears more than a threshold
number of times.

We perform our experiments on a dataset whose charac-
teristics precisely match that of the Netflix Prize dataset: the
number of users is 480K, the number of movies is 18K, the
ratings are integers between 1 and 5. Utility is measured as
the root mean square error (RMSE) and reported relative to
the same benchmark used as part of the competition. Two
smaller datasets (200 and 2,000 movies) are selected ran-
domly from the main set. As seen in Table 5, the RMSE with
and without PROCHLO privacy is similar across datasets.

6. Conclusions
Although a long-standing issue, the privacy of users’ soft-
ware monitoring data has recently become a pressing con-
cern. Fortunately, those concerns can be addressed in a man-
ner that simultaneously permits high-utility analysis, is com-
patible with standard software engineering practice, and pro-
vides users with strong privacy guarantees.

This paper has described how to address those privacy
concerns in the context of the ESA architecture, and its
PROCHLO implementation. To offer good means of balanc-
ing privacy and utility, and to minimize trust, PROCHLO in-
troduces both new cryptographic primitives and a new algo-
rithm for oblivious shuffling, and also relies on the advanced
technologies of trusted computing and differential privacy.
Even so, PROCHLO remains a relatively simple, easy-to-
understand system, and a straightforward realization of the
ESA architecture. However, as a framework for balancing
privacy and utility, ESA is flexible enough to permit many
implementations, and the use of the most appropriate tech-
niques for different data-collection and analysis scenarios.

Acknowledgments
This paper is dedicated to the memory of Andrea Bittau, our
colleague who wrote much of PROCHLO. We thank Kunal
Talwar for his help analyzing Stash Shuffle’s security prop-
erties. We thank the anonymous reviewers for their detailed
feedback, and Martı́n Abadi, Johannes Gehrke, Lea Kissner,
Noé Lutz, and Nicolas Papernot for their valuable advice on
earlier drafts. Our shepherd, Nickolai Zeldovich, provided
invaluable help with this final paper version.

16

Mozilla tries Prio (NSDI 2017)
Pretty similar to PrivAd, Adnostic, etc

https://crypto.stanford.edu/prio/

Each Prio client holds a private data value (e.g., its current
location), and a small set of servers compute statistical functions
over the values of all clients (e.g., the most popular location).

What next?

• Clear dilemma between privacy and utility

• How do we trust the client? (hint: TEE)

• How do we trust the server? (hint: TEE)

• How do we trust the third party? (timing, collusion, encryption)

• How much data do we really need?

• Click fraud is the biggest threat here? Or is it Ad blocking?

• How do monetary incentives (BAT?) nudge the system?

References

• RAPPOR: CCS’14

• PROCHLO: SOSP ’17

• Prio: NSDI’17,

• https://hacks.mozilla.org/2018/10/testing-privacy-preserving-
telemetry-with-prio/

For more information, software, and papers:

https://brave.com/research/

https://hacks.mozilla.org/2018/10/testing-privacy-preserving-telemetry-with-prio/
https://brave.com/research/

