SEcure Cloud computing for CRitical Infrastructure IT

Impact of Intra-cloud Live Migration on Anomaly Detection

Noor Shirazi Steven Simpson David Hutchison

AIT Austrian Institute of Technology • ETRA Investigación y Desarrollo • Fraunhofer Institute for Experimental Software Engineering IESE • Karlsruhe Institute of Technology • NEC Europe • Lancaster University • Mirasys • Hellenic Telecommunications Organization OTE• Ayuntamiento de Valencia • Amaris

Abstract

• Investigated the impact of live VM migration on state-of-the-art anomaly detection techniques, under various attack types and intensities.

Key Findings :

- Performance for AD degrades as shown by their ROC curves when live migration is initiated while VMs are under an attack (NS/PS/DoS) [1].
- Presence of mgiration affects the ability of both techniqus to detect netscan more than DoS.

[1]. Simpson.S, Shirazi.N, Hutchison.D, and Helge.B, "Anomaly detection techniques for cloud computing," Dec. 2013. [Online]. Available: https://www.seccrit.eu/upload/D4-1-Aomaly-Detection-Techniques-for-Cloud.pdf

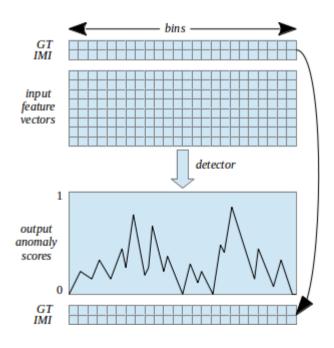
Intro: Anomaly detection

- Selection of AD techniques
 - Principal component analysis [Lakhina et.al]
 - Clustering based techniques (K-means) [Wu and Zhang]
 - Naïve Bayesian [Muda et.al]
 - Expectation Maximization (EM) for Gaussian Mixture Model (GMM) –
 EMGM [Markou and Sameer]
- Reasons
 - Ease of implementation
 - Proven ability to detect anomalies
 - Type of data
- For cloud computing
 - Lack of comprehensive comparison of existing methods
 - Lack of annotated datasets for their evaluation

Intro: Anomaly detection

Selection of Features

- Number of packets
- Number of bytes
- Number of active flows in each bin
- Entropy of source IP address


Evaluation metrics

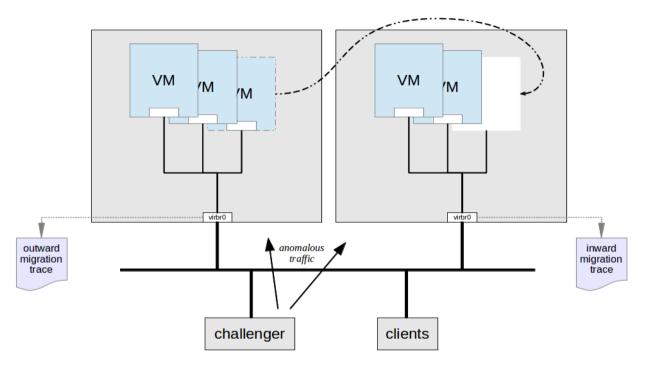
- Anomaly score graph (ASG)
- Detection rate
- ROC/PRC

Attack types

 Portscan , Network scan & Denial-of-service

- Entropy of destination IP address
- Entropy of source port
- Entropy of destiation port
- Entropy of packet size

Evaluation framework

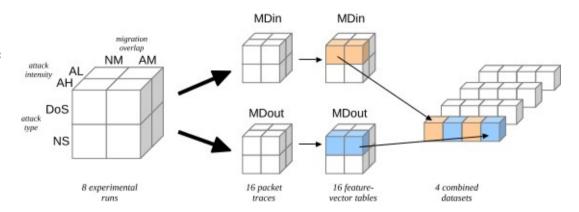


- The AD evaluation framework compose of various pre and post processing modules, which comprises of several scripts and libraries written in perl, python, C and Matlab.
 - Attack scripts
 - Volume and non-volume based attacks
 - Rate limiting features
 - Monitoring scripts
 - · Tcpdump based
 - Background traffic scripts
 - Summary extraction scripts
 - Convert traffic into normalized statistical properties on a per packet basis
 - Based on libpcap
 - Provide interface to detector
 - Detector scripts
 - Reconfigurable as per the parameters (such as components/dimensions, thresholds, normalization schemes etc)
 - Visualization Scripts
 - Compare anomaly score to threshold and plot ROC and PRC curve

Experimental setup

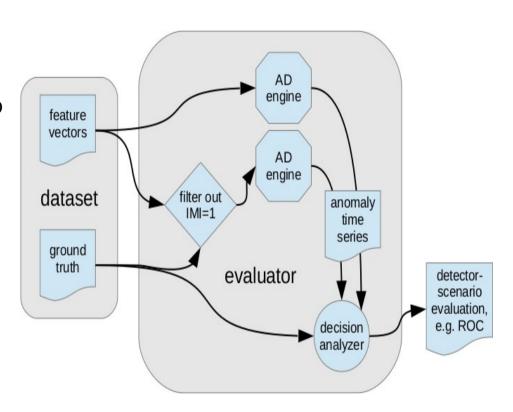
- KVM for virtualizaton
- QEMU for hardware emulation
- Managed using Libvirt3 enables VM migration

- Two physical VM hosts
 - Several VMs on each node running HTTPd
 - VM traffic logged
 - Bridged onto same network

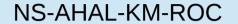

In each run:

- Start anomalous traffic half-way through
- Live local VM migration during either normal or anomalous period

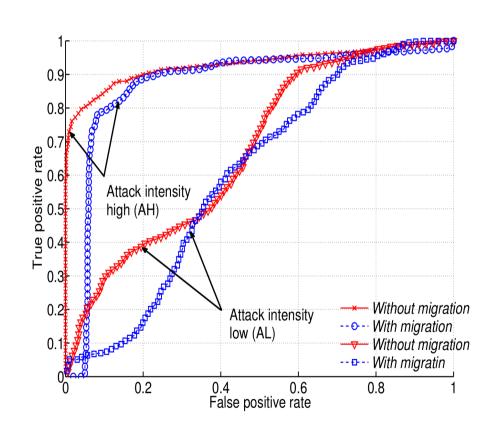
Evaluation method


- Experimental run yields packet traces with GT and IMI marked
- In each 10min run background traffic is at fixed rate.
- Attack scripts start 5 min, hence its traffic appears in each trace from the midpoint.
- At either 2.5 min or 7.5 min, a migration of one of the VM initiated.
- A run is characterized by attack type, intensity, migration overlap and node from which it was taken inward/outward
- Each trace is filtered to eliminate management traffic
- Divided into 1 second bins and each bin is convrted into feature vector from related traces. i.e the four in which the same atack type and intensity was applied with NM/AM and MDin/MDout varying., are combined to form a dataset

Evaluation process


- Each examined detection technique is then appplied to each dataset by sumbitting them together to an evaluation process.
- Each dataset consists of a traffic trace and ground truth, and represents a scenario.
- An AD engine is instantiated according to an AD configuration.
- The traffic trace is fed into the engine to produce an anomaly time series
- The Decision Analyzer compares this series of probabilities with the binary ground truth for the equivalent period of time, and yields an evaluation of the AD configuration against the scenario.
- Partitioning the labeled output according to migration GT (IMI)
- Generate an evaluation of AD technique under both migration and non-migration situations

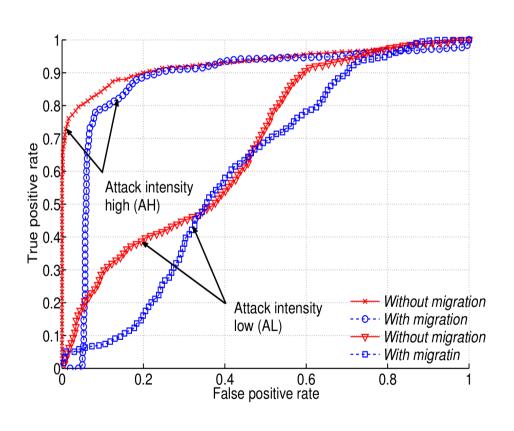
Results

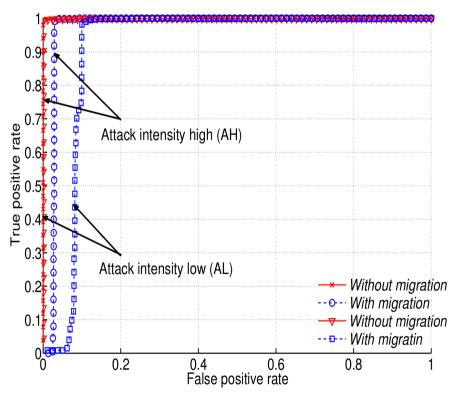


For more scenarios and experiments (refer to d4.1).

0.9 0.8 0.7 True positive rate Attack intensity high (AH) 0.3 Attack intensity low (AL) 0.2 Without migration With migration Without migration With migratin 0.2 0.8 0.6 False positive rate

DoS-AHAL-KM-ROC


Results - cont



For more scenarios and experiments (refer to d4.1).

DoS-AHAL-PCA-ROC

Conclusions

- We observed that migration has direct impact on performance of underlying AD control
- Future designs of cloud-oriented anomaly detection components should consider this factor.
- Unreliable for CI (high assurance services)

SEcure Cloud computing for CRitical Infrastructure IT

Contact

Noor Shirazi, Steven Simpson & David Hutchison

Lancaster University

n.shirazi@lancaster.ac.uk, ss@comp.lancs.ac.uk, d.hutchison@lancaster.ac.uk

AIT Austrian Institute of Technology • ETRA Investigación y Desarrollo • Fraunhofer Institute for Experimental Software Engineering IESE • Karlsruhe Institute of Technology • NEC Europe • Lancaster University • Mirasys • Hellenic Telecommunications Organization OTE• Ayuntamiento de Valencia • Amaris

