SEcure Cloud computing for CRitical Infrastructure IT



Y UNIVERSITY

# High Assurance in Multi-Layer Cloud Infrastructures

### PhD Research Agenda[1]

Austrian Institute of Technology (AIT) / Technical Univsersity of Vienna Aleksandar Hudic

[1] Hudic A., Mauthe A., Caceres S., Hecht T., Tauber M. : "Towards continuous Cloud Service Assurance for Critical Infrastructure IT", IEEE FiCloud-2014 AIT Austrian Institute of Technology • ETRA Investigación y Desarrollo • Fraunhofer Institute for Experimental Software Engineering IESE • Karlsruhe Institute of Technology • NEC Europe • Lancaster University • Mirasys • Hellenic Telecommunications Organization OTE• Ayuntamiento de Valencia • Amaris









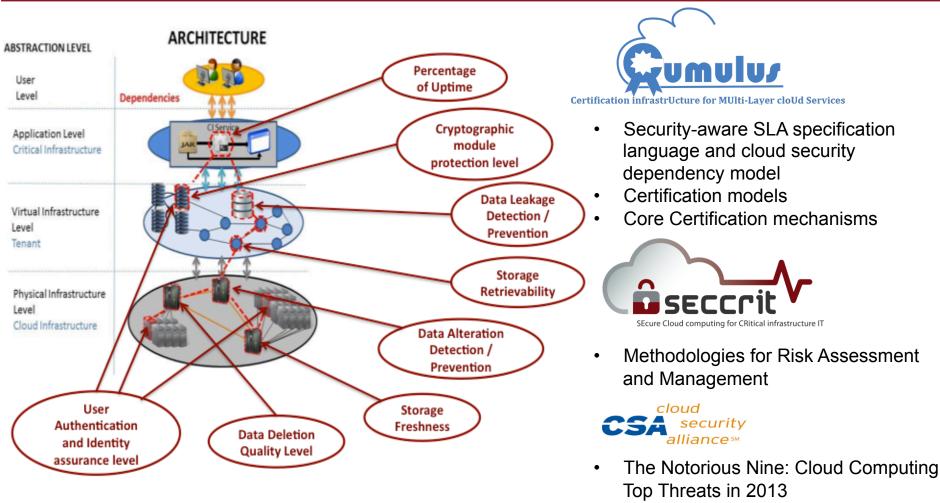
Levels of Abstraction (The SECCRIT architecture) Abstraction Stakeholder Resources Level CL Service User User Level Client Devices SLAs Provides Service Critical (SaaS /Paas) CI Service Infrastructure Component Component Component manages (CI) Service service Provider Level resources Service Components Provides Virtual Compute Resources Virtual Virtual Storage Tenant Infrastructure Tenant Virtual Network (laaS /PaaS) Infrastructure Infrastr. manages Provider level virtual resources Tenant Infrastructure Provides Virtual Physical Resources Cloud Compute (laaS) Cloud Storage Infrastructure Infrastructure Network Provider manages Level cloud resources Cloud Infrastructure (Data Centre)

R. Bless, Flittner, M., Horneber, J., Hutchison, D., Jung, C., Pallas, F., Schöller, M., Shirazi, S. Noor ul Ha, Simpson, S., and Smith, P., "Whitepaper "AF 1.0" SECCRIT Architectural Framework". 2014. (and IEEE CloudCom)

How to assure that security properties are met across distinct cloud layers with different stake holders?

How to derive continuous assessment of security properties across the clouds architecture?

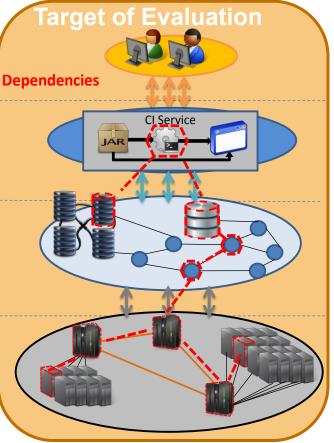
How can security be assessed, measured or scaled in respect to a certain predefined set of security properties (assurance levels)?


How to aggregate/inherit security across different stake holders in Cloud?



- Establish a catalogue of the most relevant security concerns (based on established work)
  - Classify them per classes
  - Distinguish their relevance
- Provide a compact methodology for assessment and aggregation of these security concerns horizontally and vertically
- Define policy of aggregation for certain set security properties
- Propose an empirical evaluation of the methodologies proposed

# **Security properties**





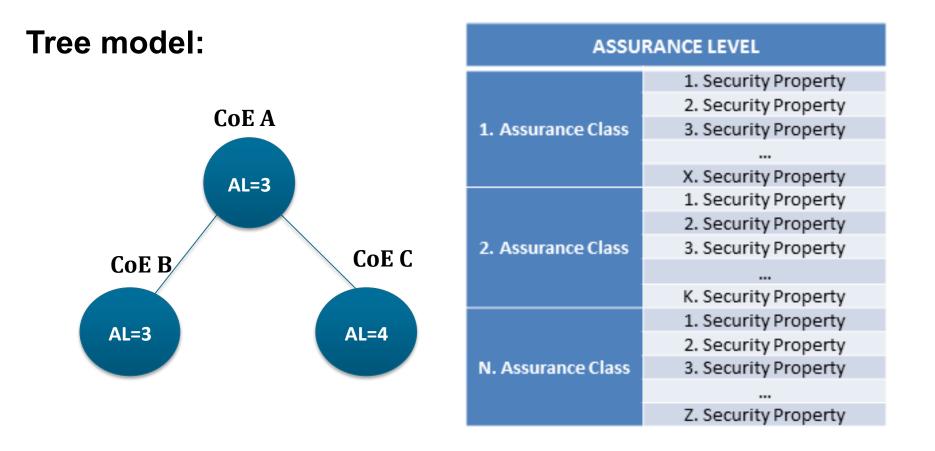

## **Assurance Assessment Framework**



**ABSTRACTION LEVEL** User Level **Application Level** Critical Infrastructure Virtual Infrastructure Level Tenant **Physical Infrastructure** Level **Cloud Infrastructure** 



#### Framework elements:


- Component of Evaluation (CoE)
  - Component dependencies (CD)
  - Association (AS)
- Group of Evaluation (GoE)
- Target of Evaluation (ToE)

#### **Assurance Profile:**

- Assurance Type (AT)
- Assurance Properties (AP)
- Assurance Class (AC)
- Security Objectives (SO)
- Assessment Interval (AI)

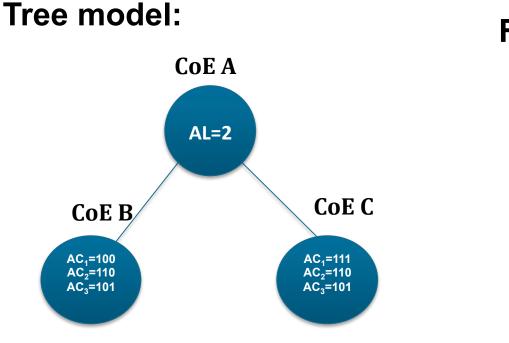
**Common Criteria Framework** for Information Technology Security Evaluation, CCDB USB Working Group, 2012, part 1-3. Online available: http://www.commoncriteriaportal.org.





Aleksandar Hudic, Thomas Hecht, Markus Tauber, Andreas Mauthe, and Santiago Caceres Elvira, **"Towards Continuous Cloud Service Assurance for Critical Infrastructure IT**", IEEE International Conference on Future Internet of Things and Cloud (FiCloud 2014)




# **Aggregation Policies (2)**

| ASSURANCE<br>LEVEL |                 | I.     |                 | II     |        | Ш   |        | IV     |                 | N      |        |                 |        |        |     |        |
|--------------------|-----------------|--------|-----------------|--------|--------|-----|--------|--------|-----------------|--------|--------|-----------------|--------|--------|-----|--------|
| AC <sub>1</sub>    | SP1             | 1      |                 |        | Х      |     |        | 1      |                 |        | 1      |                 |        | 1      |     |        |
|                    | SP <sub>2</sub> | 0      |                 |        | 1      |     |        | 0      |                 |        | 1      |                 | 1      |        |     |        |
|                    | SP3             | 0      |                 |        | 0      |     |        | 1      |                 |        | 1      |                 |        | 1      |     |        |
| DAC1               | DSP             | $SP_1$ | SP <sub>2</sub> | $SP_3$ | $SP_1$ | SP2 | $SP_3$ | $SP_1$ | SP <sub>2</sub> | $SP_3$ | $SP_1$ | SP <sub>2</sub> | $SP_3$ | $SP_1$ | SP2 | $SP_3$ |
|                    | DBM             | 1      | 0               | Х      | 1      | 1   | 0      | 1      | 0               | 1      | 1      | 1               | 1      | 1      | 1   | 1      |
| AC <sub>2</sub>    | SP1             | 0      |                 |        | 1      |     |        | 1      |                 |        | х      |                 |        | 1      |     |        |
|                    | SP <sub>2</sub> | 1      |                 |        | 1      |     |        | х      |                 |        | 1      |                 |        | 1      |     |        |
|                    | SP3             | х      |                 |        | 0      |     |        | 1      |                 |        | х      |                 |        | 1      |     |        |
| DAC <sub>2</sub>   | DSP             | SP1    | SP <sub>2</sub> | SP3    | SP1    | SP2 | SP3    | SP1    | SP2             | SP3    | SP1    | SP <sub>2</sub> | SP3    | $SP_1$ | SP2 | SP3    |
|                    | DBM             | 0      | Х               | Х      | 1      | Х   | 1      | 1      | 1               | Х      | 1      | 1               | 0      | 1      | 1   | 1      |
|                    | SP1             | х      |                 |        | 1      |     | 0      |        | 1               |        | 1      |                 |        |        |     |        |
| AC <sub>3</sub>    | SP <sub>2</sub> | х      |                 |        | 0      |     |        | 1      |                 | 1      |        | 1               |        |        |     |        |
|                    | SP3             | 1      |                 |        | 1      |     | 1      |        | х               |        | 1      |                 |        |        |     |        |
| DAC <sub>3</sub>   | DSP             | $SP_1$ | SP <sub>2</sub> | $SP_3$ | $SP_1$ | SP2 | $SP_3$ | $SP_1$ | SP2             | $SP_3$ | $SP_1$ | SP2             | $SP_3$ | $SP_1$ | SP2 | $SP_3$ |
|                    | DBM             | 1      | 1               | Х      | 1      | 0   | 1      | 0      | Х               | 1      | 1      | Х               | Х      | 1      | 1   | 1      |
| AC <sub>N</sub>    | SP1             | 1      |                 |        | 1      |     |        | 1      |                 | х      |        | 1               |        |        |     |        |
|                    | SP <sub>2</sub> | х      |                 |        | 1      |     |        | 0      |                 | 1      |        | 1               |        |        |     |        |
|                    | SP3             | х      |                 |        | 0      |     |        | 1      |                 | 1      |        |                 | 1      |        |     |        |
| DAC <sub>N</sub>   | DSP             | SP1    | SP <sub>2</sub> | SP3    | SP1    | SP2 | $SP_3$ | SP1    | SP <sub>2</sub> | $SP_3$ | $SP_1$ | SP <sub>2</sub> | $SP_3$ | SP1    | SP2 | $SP_3$ |
|                    | DBM             | 1      | 1               | Х      | 1      | 0   | 1      | 0      | Х               | 1      | 1      | Х               | Х      | 1      | 1   | 1      |

### **Policy Elements:**

- Dependency Assurance Class (DAC) defines the requirement for the underplaying objects in terms of security properties
- Dependency Security Properties (DSP) defined set of properties for the underplaying objects
- Dependency Assurance Class (DBM) bitmask which defines minimum requirements per Security Property for underplaying objects





### Features:

- Recursive assurance aggregation
- Overall assurance
- Dynamic infrastructure
   assessment
- Flexible object assessment

| CoE <sub>B</sub> | SP <sub>1</sub> | SP <sub>2</sub> | SP <sub>3</sub> |
|------------------|-----------------|-----------------|-----------------|
|                  | 1               | 0               | 0               |
|                  | 1               | 1               | 0               |
|                  | 1               | 0               | 1               |

| CoE <sub>c</sub> | SP <sub>1</sub> | SP <sub>2</sub> | SP <sub>3</sub> |
|------------------|-----------------|-----------------|-----------------|
|                  | 1               | 1               | 1               |
|                  | 1               | 1               | 0               |
|                  | 1               | 0               | 1               |



**CoE**<sub>B</sub> SP<sub>1</sub> SP<sub>2</sub> SP<sub>3</sub> Tree model: AC<sub>1</sub> 1 0 0 **CoE** A 0 1 1 0 1 1 AL=2 CoEc SP<sub>1</sub> SP<sub>2</sub> SP<sub>3</sub> **CoE C COE B** AC<sub>1</sub> 1 1 1 AC<sub>1</sub>=100 AC<sub>2</sub>=110 AC<sub>1</sub>=111 0 1 1 AC<sub>2</sub>=110 AC<sub>3</sub>=101 AC<sub>3</sub>=101 1 0 1 SP<sub>1</sub> SP<sub>2</sub> SP<sub>3</sub>

 CoE<sub>B</sub> {AC<sub>1</sub>}
 1
 1
 1

 CoE<sub>C</sub> {AC<sub>1</sub>}
 1
 1
 0

 CoE<sub>B</sub> {AC<sub>1</sub>}  $\wedge$  CoE<sub>B</sub> {AC<sub>1</sub>}
 1
 0



- Strong security assessment framework for Cloud infrastructures is required
- Flexible
- Technology independent
- Both User and Provider centric
- Non invasive on the Cloud infrastructure

SEcure Cloud computing for CRitical Infrastructure IT



### Thank you for your attention!

#### Contact

Aleksandar Hudic AIT 0043 664 88390 711 aleksandar.hudic@ait.ac.at

AIT Austrian Institute of Technology • ETRA Investigación y Desarrollo • Fraunhofer Institute for Experimental Software Engineering IESE • Karlsruhe Institute of Technology • NEC Europe • Lancaster University • Mirasys • Hellenic Telecommunications Organization OTE• Ayuntamiento de Valencia • Amaris

