Protective Jamming

- S.Sankararaman, K. Abu-Affash, A. Efrat, E. Arkin, Y. Cassuto, J. Mitchell, S. Eriksson-Bique, V. Polishchuk, S. Ramasubramanian, and Michael Segal
- Started at 2012 and continues ...

RFID Devices

- Tags and Readers
- Sensitive information
 - Credit cards, patient information in hospitals, etc.
 - Tricky to encrypt due to severely limited capabilities

Eavesdroppers and Jammers

RFID tags (or other active wireless sources), are placed in storage areas.

- The storage is surrounded by a fence
- Hostile eavesdroppers might be present outside fence.
- Idea for protection: Place (friendly)
 jammers that create "enough" noise to
 prevent successful unfriendly reading.
- This jamming should not disturb legit reading within storage.

Questions:

- 1. How to model successful jamming?
- 2. Where to place jammers?
- 3. Power assignments?
- 4. How to orient antennas (if not omnidirectional)?
- 5. How to schedule jammers (eg when battery operated)

Same setting, different motivation

- Inmates/Terrorists/Drug Dealers (depending on funding agency) inside a prison might (illegally) have cellphones
- Need to jam their communication with outside world, without disturbing legit users outside the (outer) fence of the prison.

So jammers create virtual Faraday cage

Same setting, yet another motivation

- Sensors communicate inside a sensors field.
- Eavesdropper outside the fenced region try to decrepit the sensor communications.
- Friendly jammers provide another level of security, on top of encryption.

Started with Assumptions

- 1. Only single frequency
- 2. Eavesdroppers could be anywhere outside fenced region.
- 3. No assumption about sensitivity of readers and eavesdroppers.
 - => No assumptions about **range** of tags and jammers.
- 4. No co-transmissions from tags.
- 5. Jammers have no sensing abilities.
- 6. Other source of noise are not taken into account in SINR model (only simplify the problem)

Successful Jamming

<u>Def</u>: Given user-specified thresholds P_0 , δ_0 jamming is <u>successful</u> if:

- ① For every point t_i inside the storage, the summed power from all jammers $< P_0$
- (2) For every point p_i outside the fence (possible eavesdropper), and every placement of RFID tag t_i , we have

$$\frac{\text{Power received at } \boldsymbol{p_i} \text{ from } \boldsymbol{t_i}}{\sum_{j_k \in \text{Jammers}} \text{Power received at } \boldsymbol{p_i} \text{ from } \boldsymbol{j_k}} \leq \delta_0$$

Power received = power transmitted / distance²

Observation: For every eavesdropper **q**, need to worry only about nearest storage point (in omnidirectional case)

Claim: Under "reasonable" assumption, enough to validate conditions only for points on **boundaries** of fence and storage (jammers could be placed anywhere, though)

Discretization, Witness Points

We could discretize the fence and storage boundaries by placing a set W of "witness points", and validate the conditions only on these points.

For every storage witness point
$$\sum_{j \in \text{Jammers}} \frac{\text{Power of } \boldsymbol{j_i}}{\text{dist}(t_i, j_i)^2} < P_0$$
 For every fence witness point
$$\delta_0 \sum_{j \in \text{Jammers}} \frac{\text{Power of } \boldsymbol{j_i}}{\text{dist}(p_i, j_i)^2} \ge \frac{\text{Power of } \boldsymbol{t_i}}{\text{dist}(p_i, t_i)^2}$$

Conclusions: Can use it to 'solve' variants of the problem such as

- Picking a subsets of jammers from candidate locations
- Schedule activation/deactivation of jammers activate to last longer.

PROBLEM:

•Running time depends critically on #constraints, so could not use too many witness points. So challenging to provide guarantees for non-witness points.

New Result:

•Can place place only $O(n/\epsilon \log (perimeter))$ witness points so successful is guaranteed everywhere, with ϵ -approximation of constants P_0 , δ_0

- Eavesdropper could try to avoid the noise from Jammers by using directional antenna
- Jamming problem now is to verify that for every **placement** and orientation of cone, successful jamming is obtained when considering only nodes within this cone
- The angle θ cannot be too small since RFID frequencies is usually 30Mhz
- Can show: # witness points is still bounded from above by $O(n^3/\epsilon^3 \log (perimeter))$

Extensions

Spatial separation: different frequencies, different times

- Temporal jamming: try to jam selected bits, not all of them
- Bring geometry into account
- Problem becomes simpler if jammers using the same power

Thank you