

Servers in Action: Towards Distributed Traffic Measurement in Data Centers

Praveen Tammana & Myungjin Lee School of Informatics University of Edinburgh

MSN'14 - Cosener's House, Abingdon

Network Measurement in Data Centers

- Data center applications
 - High Bandwidth
 - Latency sensitive
- Network Management
 - Control
 - Routing, Access control
 - Measurement

- Traffic engineering, Security applications
- Basic requirements
 - Accuracy, Scalability
- Data center requirements
 - Programmable, Responsive, Evolvable

Data Center Measurement Requirements

- Responsiveness : Quick control loop decisions (Heavy flow scheduling)
- **Programmability**: Adaptable to dynamic workloads
- **Evolvability:** Software based measurement module (bloom filter, trie, hashtable)

Network Measurement Framework

Software Based - Flow Monitoring

worms, portscans, botnets

Sampling

- NetFlow, sFlow
- High traffic rates compliance with limited switch resources (SRAM, CPU)
- Problem
 - Not Accurate (Basic Requirement)
 - Flow coverage and accuracy are compromised.
 - Not suitable for management tasks that requires fine grained flow details.

Hardware Based - Flow Monitoring

Task Oriented

- Task 1 : Anomaly Detection
- Task 2 : Traffic Engineering
- Problem
 - Not Evolvable (DC Requirement)
 - Higher speed links (40/100 Gbps)
 - SLA monitoring in data centers

Data Center Network Is Evolving

(Net Optics 2013)

Distributed Traffic Measurement

• Our approach :

 Distribute flow monitoring overhead between switches and servers

Distributed Traffic Measurement

Administrators have complete control of switches and servers

- High computational resources (multiple cores, large memory)
- Hosts observe relevant traffic of running services
- Monitors less traffic than switch

Proposed Framework

Aggregation module

- Consumers
- Aggregates statistic packets (s-pkts)
- Counters can be stored in high density DRAM

Measurement module

- Producers
- Monitor traffic and generates statistic packets (s-pkts) (e.g., per flow record)
- Feeds s-pkts to ToR switch

Proposed Framework – Packet Processing

Proposed Framework – Packet Processing

Proposed Framework – Packet Processing

On going work : Statistic Packet Forwarding

- How to forward statistic packet ?
 - Packet path encoding and IP source route option
 - Use switch forwarding table

Usecase – Hierarchical Heavy Hitter (HHH)

Traffic volume for each IP Prefix

HHH Detection

Evaluation

Simulation setup

- Measurement module : Customized YAF
- Aggregation module : IP Prefix Trie
- Packet trace T. Benson : University data center
- Aggregation module performance
 - HHH Accuracy
 - Computation overhead on Servers and switches
 - Compared with NetFlow

Preliminary Results

Preliminary Results

Conclusions and Future work

Conclusions

- Our framework offloads overhead on switch
- Evolves along with data center traffic volume
- Provides more flexibility to data centre operators

• Future Work

- Prototyping proposed framework
- Exploring performance across different measurement tasks
- Endhost based network trouble shooting (e.g., packet loss, delay)
- Impact of packet loss on accuracy
- Distributing measurement task overhead across network

Thank You

Questions

Praveen Tammana praveen.tammana@ed.ac.uk University of Edinburgh

Challenges

- Handling multiple paths between End Hosts
- Consistency with forwarding rules update

Measurement Tasks

- Hierarchical Heavy Hitter (HHH)
- Heavy Hitter
- Superspreader
- Flow Size Distribution
- DDoS

Proposed Framework : s-pkt forwarding

Flow Path : $S \rightarrow T1 \rightarrow A1 \rightarrow T2 \rightarrow R$

Proposed Framework : s-pkt Forwarding

Flow Path : S \rightarrow T1 \rightarrow A1 \rightarrow T2 \rightarrow R

s-pkt : R \rightarrow T2 \rightarrow A1 \rightarrow T1

- 1. Generate s-pkt
- 2. Enables IP source routing option