..|...|.. cisco

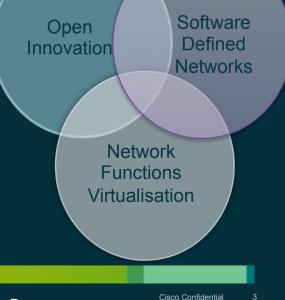
NFV – Myth, Hype & Reality

Joel Obstfeld Distinguished Engineer Chief Architect's Office

17 Dec 2013

Agenda

- What is Network Functional Virtualization
- Components and challenges
- Use Cases


Network Function Virtualization

NfV = Transition of network infrastructure services to run on virtualised compute platforms – typically x86

NfV Initiative

Initiative announced at "SDN and OpenFlow World Congress", Darmstadt, Oct 2012 Industry Specification Group (ISG) group within ETSI Initiative should be a 2 year effort Not defining standards -deliver white papers and liaising with standards bodies. First ETSI meeting was held in January'13

- Use of cloud technology to support network functions Management, Control and Data plane components
- Not technically related to SDN But may utilize SDN technology – APIs, Controllers
- Primarily an SP play today Some interest from SP-like enterprises

Network Function Virtualisation Terminology

- NF: A Network Function (NF) is a building block within an operator's network infrastructure, which has well defined external interfaces and a well defined functional behaviour. In practical terms a Network Function is today often a network node
- VNF: A Virtual Network Function (VNF) provides exactly the same functional behaviour and interfaces as the equivalent Network Function, but is deployed in a <u>virtualised</u> environment
- NFVI: The NFV-Infrastructure (NFVI) is the totality of all hardware and software components which build up the environment in which VNF are deployed, managed and executed
- NFVO: The NFV-Orchestrator (NFVO) is a software to operate, manage and automate the distributed NFV Infrastructure. The Orchestrator has control and visibility of all VNF running inside the NFV-Infra

Network Function Virtualisation Enablers, benefits and applications

Enablers

Hypervisor and cloud computing technologies
Improving x86 h/w performance and scaling
Optimised packet processing SDKs and coding techniques, e.g. DPDK, Vector Processing
Network industry standardising on Ethernet
Network automation / orchestration

Value Proposition

Reduction in CAPEX and OPEX Faster service provisioning Service agility

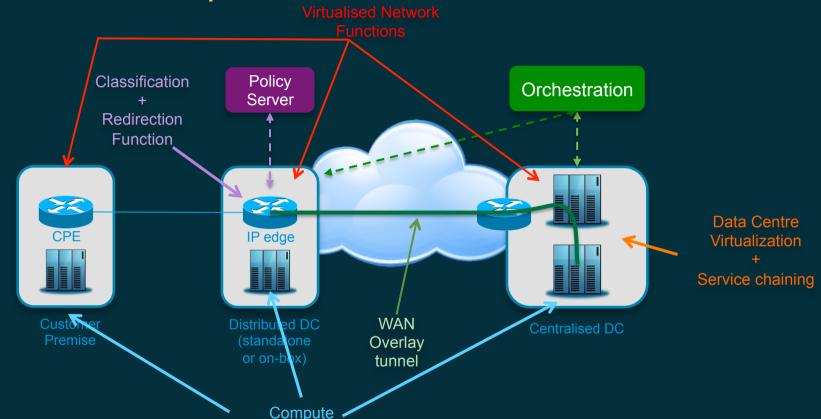
Applications

Network Components Network Services Network Control Elements

Myth and Hype

- NFV removes the need for 'Big Iron' network devices
- Anything a physical network device can do, a VNF can do
- Just remove your physical device and replace with X86 + VNF
- Management is so much easier!

Reality?


If only it were that simple...

Components & challenges

More than simply virtualizing everything

Network Function Virtualization Architectural Components

Required components and location of components will vary by use

All use cases result in => Compute + VNFs + DC virtualization + Orchestration

Re-direction use cases => Policy Server + WAN Overlay

© 2013 Cisco and/or its affiliates. All rights reserved.

Network Function Virtualization The challenge

- Centralised vs. Distributed... Scale vs Management complexity Centralized services – can run in centralised data centres – does it scale? Distributed services – need to be distributed further out in the network – what is the management overhead?
- Control/Management plane vs. Data/User plane services
 Control Plane Services deal with signalling and management

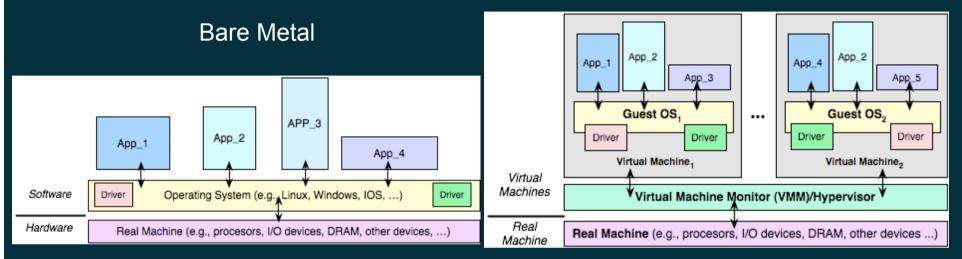
Examples include DNS, OSS, DHCP, Route Reflector

Data Plane Services – forwarding/manipulation of user packets

Examples include DPI, NAT, CGN, BRAS, GiLAN services

 Redirected traffic vs. routed traffic service -> how the traffic gets to the service? Redirected - a network device identifies a flow(s) and redirects it from its normal path Routed - the traffic will naturally routed through the service

Virtual Network Function (VNF) Criteria for evaluating virtualization


- VNF Definition : Provides exactly the same functional behaviour and interfaces as the equivalent Network Function, but is deployed in a virtualised environment
- Service Evaluation criterion:
 - Packet Performance
 - Infrastructure versus service
 - Deviation from 'standard' server builds
 - Economics / practicality of on-boarding service

Basic characteristics of processing devices

Characteristic	General Purpose CPU	Custom ASIC / NPU
Throughput (BW)	Low	High (10x)
Performance (pps)	Low	High (10x)
Power efficiency (Gbps/W)	Low	High
Integration	Low	High
Flexibility	High	Medium
System development cost & time	Low	High

General Virtual Machine Model

Virtual Machine

NFV Group looking for maximum flexibility

Compute Technology

Hypervisor and 'Generic' Virtual Machines preferred – avoid custom device drivers Bare metal acceptable – needed for performance reasons

NIC Mapping

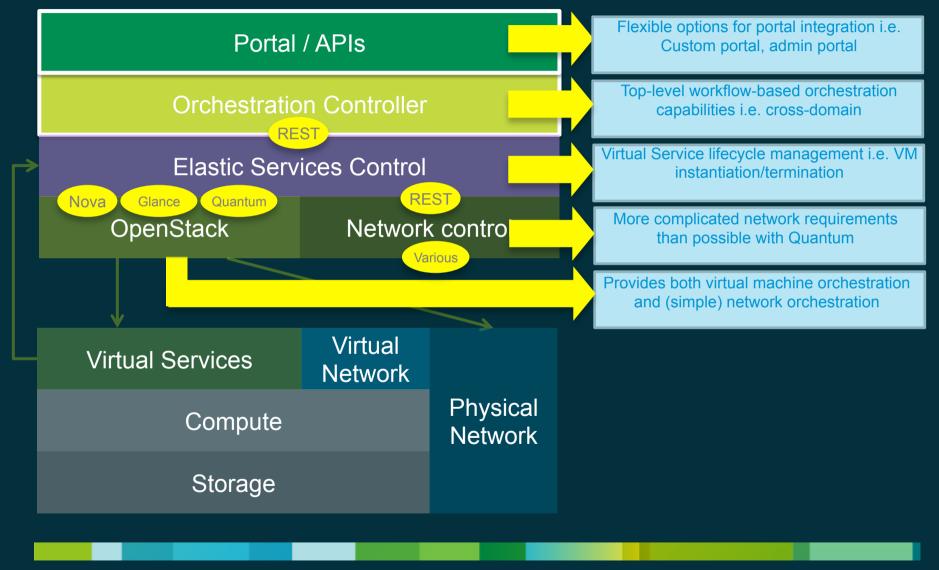
Major bottleneck for packet performance therefore focus of research Pass-through and SR-IOV technologies

Characteristics of Network Elements

High Capacity Plumbing: (L0-3 : e.g. IPv4/v6, MPLS, VPNs, ACLs, optical)

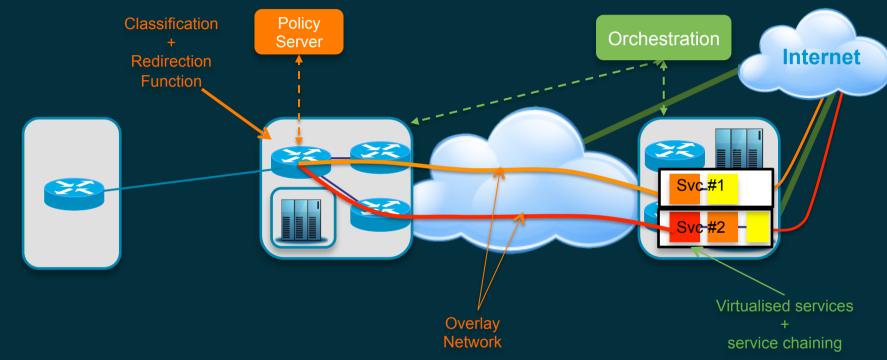
High throughput / BW Many flows needing isolation, significant traffic management needed Stateless functions Mostly predictable traffic Interface energific functions (2) store for wording) Low compute + High BW → Good fit for NPU → Poor fit for x86/CPU

Interface-specific functions (2-stage forwarding)


Network Services: (L4+: e.g. DPI, vFW, CGN, DDOS, BNG, mobility, ...)

Variable throughput Variable # of flows (traffic management) Stateful functions No interface-specific functions

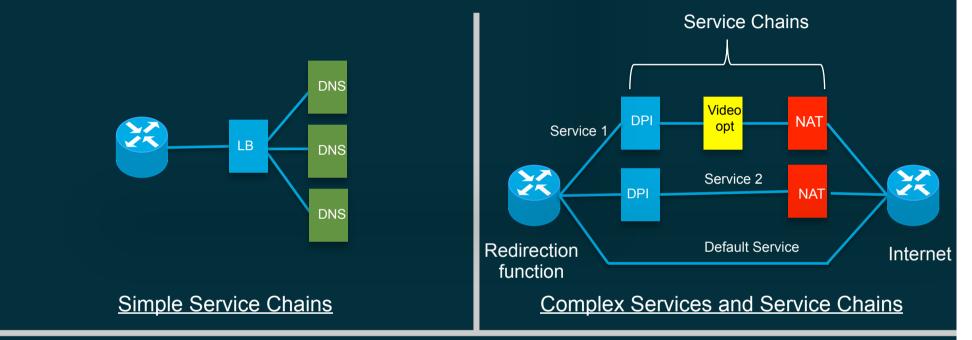
S High Compute + Low BW Yes (%) Good fit for x86/CPU No (%) Poor fit for x86/CPU


© 2013 Cisco and/or its affiliates. All rights reserve

Network Function Virtualization NfV Orchestration

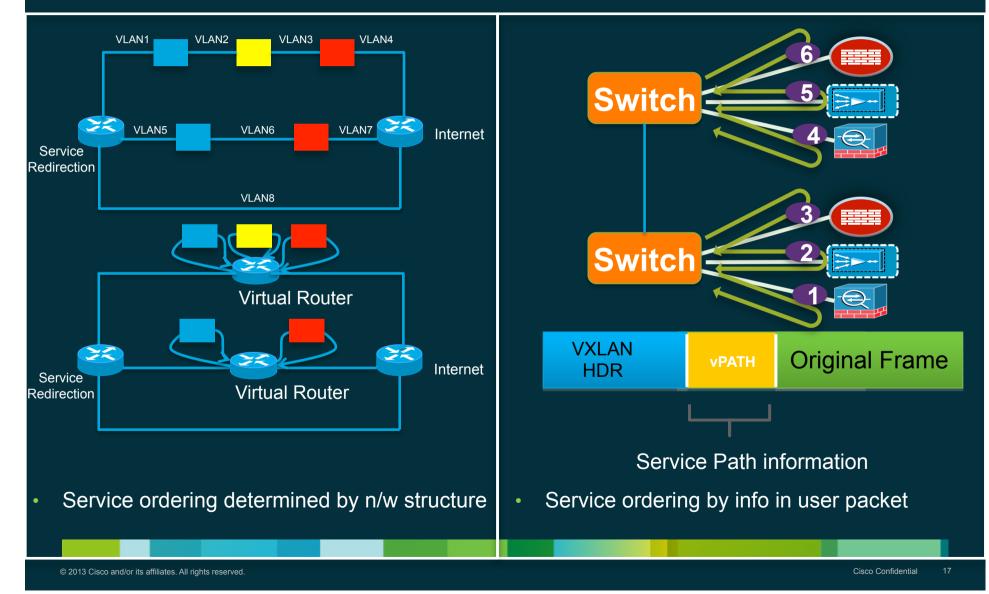
© 2013 Cisco and/or its affiliates. All rights reserved

Service Redirector and Policy Server Overall concept



 Redirector overrides the default packet forwarding to re-directing user traffic to a services infrastructure

Typically lives close to the IP edge of the network, e.g. PE, BNG, P-GW, CMTs


- Under control of customer-aware policy function
- Primarily required for data plane services

Service Chaining and Virtual Network Overlays Service Chain Definition

- How to steer traffic through a one or more service entities composed at SW speed?
 - Critical for non-routed data plane services
 - Important for control plane services
- Physical service path or carried in packet metadata?

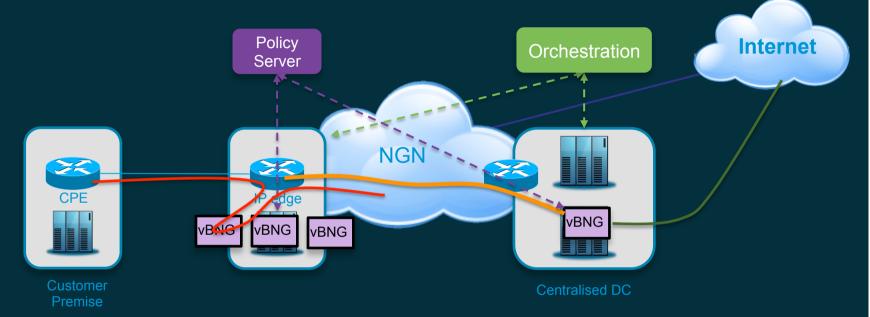
Service Chaining and Virtual Network Overlays Service Chain Technology

NfV High Level Use Cases

Use Cases

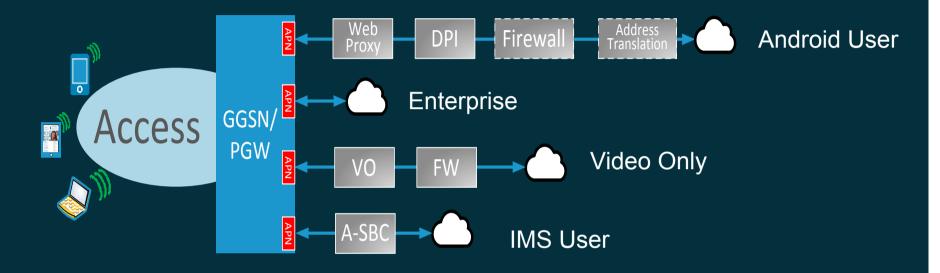
- Virtualized SP and 3rd party applications / appliances
- Virtualized gateways (PE, P-GW, BNG)
- Virtualized Mobile Services infrastructure

NfV use case: Virtualized SP and 3rd Party applications / appliances



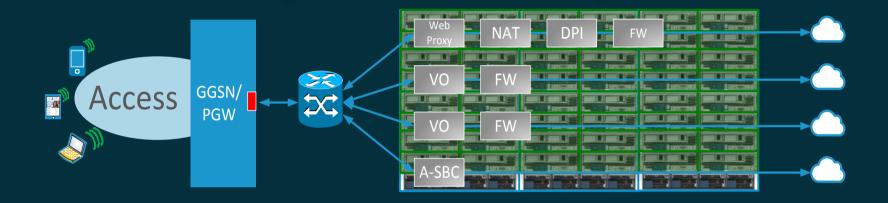
- SP <u>infrastructure</u> applications running on virtualized compute resources Centralised or distributed
- Examples:

BGP Route-reflectors, Radius servers, Policy servers, DHCP servers, DNS, OSS / BSS, IMS subsystem components..


- Third party applications: Third party CDN and caching capabilities
- Very popular concept, already deployed by many SPs

NfV use case: Virtualized Edge Gateways

- Replacement of real IP Edge device with code executing on virtualized x86 platform Examples BNG, CMTS, Mobile components...
- Two vBNG examples shown, many potential variations on theme
- Cost vs complexity
- Management scale challenge vs single-point of control


NfV use case: Mobile Services Infrastructure

- Physical Appliances are complex to design because of mismatched capacities, diverse resiliency strategies, incompatible networking
- Re-configuration (adding capacity or adding an appliance) is also difficult
- No agility because the service chains are "hard-wired" to the APN and there is no programmability; reconfiguration requires manual operations

© 2013 Cisco and/or its affiliates. All rights reserved

NfV use case: Virtualised Mobile Service Infrastructure

Cloud Orchestration and Management

- Simple reconfiguration of service chains via SDN and virtualization tools
 - → better vertical scaling
 - → horizontal scaling (adjusting capacity)
- Simplified cost model based on subscriber count + base cost of commodity hardware
- Need better solutions for fault tolerance and high availability based on hypervisor tools!

Summary

Network Function Virtualization Research ideas

- Real performance of x86 running a full WAN routing/switching function
 - Large tables, ACL, QoS, policing
 - PPS, packet delay, packet loss under x86 and various hypervisors
- Impact and performance of hypervisors for applications
 Low latency packet services
 CPU QoS not just packet QOS
- Orchestration techniques for NFV absolutely key!
- What is the impact of NFV on n/w design?
- What are the real economics of NFV?

Network Function Virtualization

- Movement of Network functions to the cloud has significant potential
 - Control, services and data plane components
- NFV is not applicable to all network applications
 Service functions
 High performance forwarding
- NFV is an architecture rather than simply virtualizing functions

Thank you.

#