atfren]n,
CISCO

NSD — Network Supplied Data

Giles Heron
Principle Engineer, Chief Architect’s Office

N1

- What is NSD?
- What happens today?

- NSD Approach
- NSD - Message Bus
- NSD: Provisioning - Service Turn-up (example use case)
- NSD: Provisioning - Service Change (example use case)

- Challenges and opportunites

What is NSD?

NSD:

- describes the publishing of information by network elements

- focuses on the wealth of untapped data already embedded in the Network today,
(Big-Data style)

* helps to centralise the collection and control of the data via simple 'One to Many'
publish/subscribe mechanism

- BOF planned for IETF London, March 2-7th 2014

What happens today?

- ‘Traditional tools’ - mostly SNMP or CLI scraping tools which interrogate devices in the network
* In most networks, information is collected by a wide variety of systems —

large scale NMS solutions through to individual systems (many hidden boxes under desks...)
- Security of the information is difficult to maintain

No central control over the information

ACLs have to be maintained on devices

« There is no easy way to aggregate information from these disparate systems - Big Data Analytics
problem

- There is often no common data format or the format is not web developer friendly (e.g. SNMP uses
ASN1 whereas web developers prefer JSON etc.)

NSD Approach

« NSD is built around the familiar ‘Publish and Subscribe’
concept

- A router/switch publishes information about itself
(inventory), events that happen to it, and other information
stored in its hardware counters etc

 The information to be published is configured via a central
SyStem (SDN COntrO”er) Live Master Records

 The information is published using simple lightweight
protocols over a secure channel

- The information is delivered to a central store Policy Controlled Big Data Analytics

- Access to the information is controlled centrally via a
policy controller

 Analytics tools can access all the centrally stored data

- Uses the network as the

© 2013 Cisco and/or its affiliate:

Messaging: Pub/Sub Programming

SDN Agent Setup
Example

- The Pub/Sub setup is programmed via the SDN
controller.

Initialise Secure Connection

- Agent key programmatic attributes : J
Connection/s to pub/sub neighbours (i.e SDN egin pub/sub agent config push, (Yang, XML, OnePK)
controllers, message bus, other agents).

Agent connection to Message Bus Pri

Configuration of security, message transport method Agent connection to Message Bus Sec
N Message Bus
i Secondary

Configuration of events, message types :
_ rimary

Program Message Bus with Notification config :

Subscribers setup via SDN controller

= %

[—
Subscribers

© 2013 Cisco and/or its affiliates. All rights reserved.

NSD - Message Bus

SDN Controller can also have
message bus functions for

- The message bus supports both P2ZMP translation and decoupled

: publishing functions
messaging and also message protocol _
translation.

Message principle of send once, but many Message Bus

Primary

possible receivers. (decoupled model) ossage

Messages are subscribed to via the message bus, R Subeoribe (o Evens
which can be separate or part of the Controller. >

Cariden — Yang

Different systems are able to have messages
delivered / sent in any number of common Analytis - XMPP
message formats, as the message bus will
translate.

Blah - Yang

N Bulk Lightweight Accounting/Auditing Heuristics

Security over the listeners/subscribers is B sen-rest
centralised via the Controller. -

© 2013 Cisco and/or its affiliates. All rights reserved.

NSD: Provisioning - Service Turn-up (example use case)

- PE publishes a Service ID message (“s- Kooy el

message”) when customer attaches s-message

s-message published

- Configuration is created based on
information in s-message and information = .

. . sing the received

previously learned in Inventory messages s-message, the

service config

(i-messages) sent when the PE started up creation begins at
and stored in the LMR DB. 0SS / PCRF

OSS/PCREF dips to inventory database
(created by i-messages) to identify

SerVICeS allc bUIIt from templates reSIdmg at hardware/software information and related
the OSS/PCREF. templates

The Policy Controller constructs the interface/ , , ,

- c . OSS/Policy controller dips to service
service config using both the Customer template DB for customer parameters
Parameters database and also the —
Infrastructure database (LMR).

Construction of
Yang/XML message
complete.

Service Controller programs PE (Yang, XML, OnePK)

© 2013 Cisco and/or its affiliates. All rights reserved.

NSD Provisioning - Service Change (example use case)

LC replacement. Service change
PE publishes required for multiple

- Service Change

e.g. Linecard upgraded from v1 to v2 in a PE.

PE publishes an i-message via the message
bus, indicating there has been a linecard
change, which updates the network

The Controller then identifies the service-IDs
related to that card.

Pulling together both the templates for the card
type and the service-id configs, the OSS/
Controller then publishes the new config to the
=

A major issue for SPs is handling both linecard
and service-id (customer) changes.

© 2013 Cisco and/or its affiliates. All rights reserved.

change Service-IDs

i-message published

s-message many be published

s-message many be published

OSS/SDN controller dips to inventory
i database to identify the new card version

OSS/SDN controller dips to the customer

DB to apply service config.
-

Construction of
Yang/XML
message(s)

complete.

Service Controller pushes Change to PE(s) (Yang, XML, OnePK)

Cisco Confidential

Options for exporting high-volume statistics?

- Common solution is to collect data in the Route-Processor or Linecard CPU and to export it
from there

- RP/LC CPU may be bottleneck when there are millions of counters
- What is the right format for large volumes of statistics. XML, EXI, something else?

- Is it better to publish directly or to send a message telling the controller “statistics are
ready to be collected™?

- Alternative - stream data directly from the forwarding plane packet engines

- What capabilities does this require in the packet engine?
- Do we need to export in a “simple” format and then re-encode to XML, EXI etc. off-box?

Big data — the analytics opportunities...

If we can centralise and normalise the data we can open the door to cross
platform and cross function analytics

- Any data can be consumed by any (allowed) application

- Message content is described via XML and/or JSON - therefore web
developer friendly

- Developer doesn't have to know a network transport encoding to get at the
event

« Apps can 'mash up' information from completely different layers of the
network

- For example correlate transport network issues to IP reachability problems

Big data — the analytics opportunities...

- Apps can import information completely unrelated to the network

- For example, correlate road maintenance database with network outages —
JCB through the fibre duct...

- Apps can correlate inventory data to event and service data

- For example correlate intermittent customer disconnects to particular piece
of hardware based on serial number

- Real-time 'triggers' can be created by an App

+ When your phone's location changes from work wifi to home wifi, turn on
the lights

Real-World Examples using NSD

Service Provider wants to give the same QoS to a device whether it is at
home or at a coffee shop using their WiFi service

Publish event from the home g/w or AP (or upstream router) when the
device attaches

- Application running on SDN controller matches device ID (e.g. MAC
address) to subscriber QoS profile and provisions home g/w or AP

SDN controller gathers real time location info to deliver appropriate
higher-layer services

Optionally export usage data to count against volume cap etc

* In essence is we can move to an event / notification driven

model, which is not based on the polling and heavy-weight
systems of today then we can enable a huge variety of new

services

Thank you.

