
Service-Centric Networking
for the Developing World

Arjuna Sathiaseelan, Liang Wang, Andrius Aucinas, Gareth Tyson*, Jon Crowcroft

N4D Lab liang.wang@cl.cam.ac.uk

Cambridge University, UK *Queen Mary University of London, UK

mailto:liang.wang@cl.cam.ac.uk

Content

● Background - from content to service caching.

● Motivation - why do we need service caching?

● SCANDEX - behaviors, key components and etc.

● Challenges - service abstraction, synchronisation and etc.

● Conclusion

From Static Content to Dynamic Service

● Internet is for disseminating information efficiently.
● Our network architecture originates from P-to-P paradigm.
● What should be the next move on research agenda?

○ Information should not only refer to static content.
○ Recursive definition: Information = (Information).
○ is service which filters, edits, combines existing information to

provide new information.
● Ideal Internet should be Information-Centric + Delay-Tolerant.

Real-life Needs for Service Caching

● Better localised communication: latency, bandwidth, availability …

● Better control on sharing conventional static content.

● Flexible policy configuration but with simpler architecture.

● Key services in emergency and disaster scenarios.

● Efficient access to popular Internet cloud-based services.

Let’s “scale up” services at network edge.

Communications in Developing Regions

● Poor communication infrastructures.

● Unreliable networks due to natural and technological causes.

● Intermittent connections, not only to end users.

● High cost to access backbone networks.

● Limited coverage vs. widespread population and demands.

SCANDEX - Key System Components

● Service Execution Gateway - executes services.

● Forwarding Node - forwards requests and caches services.

● Edge Gateway - interconnects different domains.

● Broker - service registration and resolution.

● Note multiple components can be multiplexed on one node.

A Utopia for Service-Centric Networking

● SCANDEX depicts a utopia of SCN.

System Features

● SCANDEX is a strawman architecture which describes how

the system should behave instead of defining protocols.

● Everything is a service, including static content.

● System supports multiple transmission strategies: IP, DTN …

● System intelligently chooses the most suitable strategy.

Questions Instead of Solutions

E.g., how to handle dynamics, predictability, cost, scalability,

audit, and etc. More specifically,

● How to define edge? Network boxes or end-user devices?

● How to differentiate from NFV (network func virtualisation)?

● What naming scheme to use? Flat or hierarchical?

● How to do service resolution? I.e., registration & discovery.

Design Challenges - Synchronisation

● Abstraction: algo + data. In practice, what is it?

● Classification: computation vs. data intensive.

● Caching: singleton vs. multi-instance.

● Synchronisation: stateless vs. stateful.

○ Service-level synchronization semantics.

○ System is only responsible for coordination.

Design Challenges - Dependency

● A hard decision → atomic & meta vs. composition.
● Dependency is modelled as a DAG.

○ How many types of cost? Computation, traffic and etc.
○ Who should resolve the dependency?

Other Challenges

● Transmission strategy selection - topology- and context-aware?

● Distributed authentication - connection- or service-based?

● Service instantiation - where and how?

● Caching strategy - proactive or passive?

Summary

● Localised communication requires us to shift from content

caching to service-caching.

● SCANDEX defines the high-level system behaviors.

● We defined the key system components and their functions.

● We presented design challenges such service abstraction,

synchronisation, dependency, caching etc., and discussed

the possible solutions

Thank you. Questions?

More Technical challenges

● From content to service - a ‘small’ but non-trivial step.

○ Which services should be migrated?

○ When should they be migrated?

○ Can cached services continue to operate without remote

connectivity?

○ How should state be managed?

