

Towards the Design of Intelligent Notification Mechanisms for Mobile Applications

Abhinav Mehrotra

School of Computer Science University of Birmingham

Importance of Mobile Notifications

 An effortless way to be aware of newly available information in real-time.

A way to initiate a remote communication.

Issues with Mobile Notifications

Interrupt ongoing tasks

Arrive at socially inappropriate moments

Interfere with our lifestyles

Not always provide useful content

Managing Mobile Interruptions

A mechanism for intelligent notification scheduling which can deliver notifications at opportune moments by learning the user's interruptibility in different contexts.

Limitations of Previous Approaches

ESM and synthetic notifications for data collection.

Missing: In-the-wild study.

 Rely on the sensed context to infer general interruptibility.

Missing: Use of notification content.

Designing Content-driven Intelligent Notification Mechanisms for Mobile Applications

Mehrotra, Abhinav, Mirco Musolesi, Robert Hendley, and Veljko Pejovic. Designing Content-driven Intelligent Notification Mechanisms for Mobile Applications. In *UbiComp'15*, Osaka, Japan, September 2015.

- 1. User's interaction with notifications in-the-wild.
 - Contextual information.
 - Notification data.
- 2. User preferences.
 - Where would you like to receive notifications with similar content?
 - When would you like to receive notifications with similar content?

NotifyMe Dataset

Participants: 35

Study duration: 3 weeks

Notification samples: 70,000 (approx.)

Questionnaire responses: 4,069

Classification of Notifications by Using the Information Type

Understanding Interruptibility

Impact of Context on Response Time

We find that the average response time of a notification does not vary with other context modalities.

Impact of Content on Notification Acceptance

Predicting an Opportune Moment to deliver a Notification

What defines an opportune moment?

- Positive response
- Quick response [how quick should it be?]

Prediction Results

By using information type and social circle we were able to predict the acceptance of a notification within 10 minutes from its arrival time with an average sensitivity of 70% and a specificity of 80%.

General vs Personal Behavioural Model

Online Learning

The inference of a user's interruptibility can be performed locally in an online fashion, achieving more than 60% precision after nine days of training.

Summary

- First in-the-wild study that uses both content and context to model interruptibility.
- The acceptance of a notification within 10 minutes from its arrival time can be predicted with an average sensitivity of 70% and a specificity of 80%.
- An online predictor can start making stable predictions after nine days of training.

Thank You!

Abhinav Mehrotra

Email: a.mehrotra@cs.bham.ac.uk

Web: http://www.cs.bham.ac.uk/~axm514

GitHub: https://github.com/AbhinavMehrotra

Open Issues

- How to infer the user's willingness to receive a notification?
- How to detect notifications that contain non-useful content?
- How to capture other factors (such as level of engagement, action required to handle a notification and so on) that might influence the user's interruptibility?
- How the user reacts when notifications are stacked by an application.