PSPAT: Packet Scheduling with PArallel Transmit

PSPAT

PSPAT: Packet Scheduling with PArallel Transmit

Luigi Rizzo, Paolo Valente*, Giuseppe Lettieri, Vincenzo Maffione
Universita di Pisa, *Univ. di Modena e Reggio Emilia
http://info.iet.unipi.it/ luigi/research.html

Work supported by H2020 project SSICLOPS

Paper at http://info.iet.unipi.it/ luigi/papers/20160511-mysched-preprint.pdf

Problem statement

* Network links way too fast

* NICs and operating systems are catching up
® VMs are catching up, too

e Software Packet scheduling not there yet

Why do we care about software schedulers ?
e first block in the network path for VMs

Luigi Rizzo, Univ. di Pisa

http://info.iet.unipi.it/%C2%A0luigi/research.html
http://info.iet.unipi.it/%C2%A0luigi/papers/20160511-mysched-preprint.pdf

Scheduling

Contract between client and resource manager:
“If you behave, I'll give you some guarantee"

e conditions must be under control of individual clients
o ' jf other clients behave'' would be a bad conditions
* guarantees are a binding promise for the scheduler
o we want a solution with known theoretical service guarantees

Scope and limitations

Theory gives us several algorithms with tradeoff between performance and guarantees
® DRR (deficit round robin): 20 ns/decision, O(N) delay
* WF2Q+ (Weighted Fair Queueing): O(log N) time, O(1) delay
* QFQ/QFQ+ (Quick Fair Queueing): 40-50 ns/decision, O(1) delay

Operating conditions:
® request rates up to 1..10 M/s
® response fimes < lus

Traditional scheduler placement

SW: Both decision and dispatch are serialized.

® unnecessary serialization - o
® prevents scalability

\OS ‘ 0S ‘
HW: the NIC takes care of scheduling
* limited choice of algorithms scheduler
 the bus is still a point of contention. m e m
M
NIC NIC

Cutting corners

Things we do when we are too slow:
e trivial schedulers (FIFO, DRR: fast but poor delay guarantees)
® active queue management (RED, CODEL: rely on everyone behaving)
* bounded number of queues: rely on quiet neighbours

and we give up on guarantees.

Wrong approach!
* the algorithms are good enough
* we need fo remove the unnecessary tx serialisation

PSPAT key idea

Decouple scheduling and transmisison
e decision must be sequential, transmission does not need to
* scheduler (arbiter) only indicates WHEN a packet can be transmitted
e clients then transmit in parallel, can enjoy an uncongested path to the wire.
* can still do a worst case analysis

PSPAT scheduler placement

v l !

dequeue () -7~ RS

P ~

- ~ ~

- -
- - enqueue () ~ ~

queue Ezl

drain () . submit ()
o - (o

A\ Y

| 0s |

PSPAT scheduler placement

Operation:
e clients submit packets to the queue
* arbiter marks those ready for transmission dequeve) -7~ Sl

- - enqueue () ~ ~

e clients do the transmit =
qUEUE | . —
Pros and cons (=] [=]

I. + d bit + l k f drain() submit ()
® clienT ana arbiTter can operate loc ree
° C Ci C Cn

no extra queueing
e arbiter has to scan through all queues I oS |

I l

NIC

PSPAT pseudocode: Client Submit

Clients just put packets in the queue

S arbiter >

int submit(pkt) { e 5] T S
i = pkt->queue_ id; q‘ul Foummic(T
cur = g[i].tail; (ANEEE ’q:f@
next = (cur + 1) % QUEUE_SIZE;
if (slots[next] != EMPTY) {

return ENOSPACE;

}

slots[cur] = pkt;

kick_arbiter(); /* only if arbiter can sleep */
return SUCCESS;

}

® no barrier needed, as in FastForward
e synchronization only through current slot

PSPAT pseudocode: Client Transmit

Client drains marked packets and reset queue slots

void drain(i) { /* drain marked packets */
slots = g[i].slots;
cur = g[i].client_head; /* next packet to send */
sched_head = g[i].head; /* set by the arbiter */

while (cur != sched head) {
<transmit packet in slots[cur]>
slots[cur] = EMPTY; /* release the slot */
cur = (cur + 1) % QUEUE_SIZE;

g[i].client_head = cur;

}

® again no barrier, sync only on consumer pointer
® queue is only written to by the client

PSPAT pseudocode: Arbiter scan

int do_scan() { S
t0 = rdtsc(); /* take a timestamp */ T
/*-- first pass, scan queues --%*/ queue [= | - =]
for (i=0; i < N; i++) { o T

while ((pkt = <new pkt in g[i]>)) (- o)

SA.enqueue(pkt);

/*-- 2nd pass, mark packets due for tx --*/
while (link_idle < t0) {
pkt = SA.dequeue();
if (pkt == NULL) {
link_idle = t0;
return NO_TRAFFIC;

}
i = pkt->queue_id;

g[i].head = (g[i].head + 1) % QUEUE_SIZE; /* mark! */
link idle += tx_time(pkt->len, bandwidth);

}
return MORE_TRAFFIC;

PSPAT additional code features

Several fricks reduce cache bouncing and misses
® lock free queue with various slot and pointer caching tricks
® queue slots only updated by the client
* arbiter can skip non-empty queues on scans
¢ idle queues will likely be cached on the arbiter
e rate limit (memory) access to queues

Performance analysis

Measure throughput and latency of different configurations:

e UDP, no scheduler

dequeue () _ -

e UDP, with TC -7 enquene)

¢ UDP’ Wiﬂ" PSPAT q::jin = submit () =

® just PSPAT (1 o (] o~
e fast I/0 (netmap) with PSPAT

\ 0s |

Special interest in performance at high loads

[]
* hopefully no livelock or latency explosion M- 14
NIC

Measurement setup

Traffic generators

® one thread per client, pinned to a core, programmable rate

dequeve() -~~~

® tests over loopback interface - enauene 0 AGRN

e 2 output mechanism: sockets or netmap q::emEmmo E

e 3 scheduler architectures: none, TC, PSPAT (1o Cj
Two different platforms

\ os |

e single socket I7, linux 4.5, 4 cores/8 threads

|
e dual socket EB, linux 2.6.32, 12 cores/24 threads Iﬂ
NIC

(=

Throughput measurements

® (Clients send as fast as possible

e variable number of clients

dequeue () _ -

e schedulers use DRR -7 enquene 0 -
e TC and PSPAT rates higher than scheduler's capacity q:m‘[):zb . [=]
® measurements in PPS as that is the relevant metric (] a (| o~
\ 0s |
| [
U

NIC

Throughput with regular UDP

N

—HB— no scheduler
—¢— MYSCHED

s EM

| |

) 10 15 20 2 4 6
of clients (XEON2) # of clients (I7)

Throughput [Mpps]
S

Throughput with fast I/0

@
B =

I
40 MYSC 17

@ netmap+MY SCHED on I7

s« MYSCHED on XEON2

20

Throughput [Mpps]

of clients

L<>THlocal PSPAT -- Page 24/24

file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/

One way latency measurements

Experiments with different link rates and humber of clients
® one client has weight=100, sends at half the reserved bandwidth
e other clients have weight=1, send as fast as possible oL
* only UDP sockets

Theory says latency is proportional to MSS/RATE

Baseline latency distribution: only high weight client

Link always idle here, so only syscall + communication overhead

T arbier . >

1 NO TC MYSCHED NO TC MYSCHED q..rl‘: k ﬁ?\
0.8 o g
0.6 -~
04—
0.2 -
0 =

Latency [us]

Lo>T PSPAT -- Page 24/24

file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/
file:///Users/luigi/luigi_DEIT/2016/20160627-pspat/

Latency versus rate, Xeon + linux 2.6.32

XEON2
1,000 TC 20 cli

100

10

Latency, 98-percentile [ps]

XEON2 PSPAT 5 cli

0.1 1 10 100
Link rate [Mpps]

Latency versus rate, I7 + linux 4.5

T T
1,000 B

B
2
=
8
3] 100
o
o
o0
=Y
S
Q
=1
&
< 10
—

| 17 II’SPAT 5cli

0.1 1 10 100

Link rate [Mpps]

Latency under overload (I7)

1

— |
0.8 —B— 1000kpps
0.6 —»— 1140kpps ||
04 —6— 1200kpps
’ —A— 1500kpps
0.2 —&— 100 Mpps
0
1
0.8
0.6 —B— 25Mpps
0.4 MYSCHED % 40Mpps | |
—e— 60 Mpps
0.2 —a— 100Mpps | |
0
20 30 40 50 60
Latency [us]

Summary

® Throughput and latency tests very encouraging

e potentially 5-10x higher throughput

e very small latency increase at low load

® much better latency under high load

e can fall back to NAPI-like behaviour at low load
http://info.iet.unipi.it/ luigi/research.html
http://info.iet.unipi.it/ luigi/papers/20160511-mysched-preprint.pdf

http://info.iet.unipi.it/%C2%A0luigi/research.html
http://info.iet.unipi.it/%C2%A0luigi/papers/20160511-mysched-preprint.pdf

