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Evolution	of	Programmable	Networking

• Many	industries	are	transitioning	to	a	more	dynamic	model	
to	deliver	network	services

• The	great	unsolved	problem	is	how	to	deliver	network	
services	in	this	more	dynamic	environment

• Inordinate	attention	has	been	focused	on	the	non-local	
network	control	plane	(controllers)

• Necessary,	but	insufficient

• There	is	a	giant	gap	in	the	capabilities	that	foster	delivery	of	
dynamic	Data	Plane	Services
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Programmable	 Data	Plane



FD.io - Fast Data input/output – for Internet Packets and Services
What is it about – continuing the evolution of Computers and Networks:

Computers => Networks => Networks of Computers => Internet of Computers

Networks in Computers – Requires efficient packet processing in Computers

Enabling modular and scalable Internet packet services in the Cloud of Computers – routing, bridging, tunneling and servicing packets in CPUs

Making Computers be part of the Network, making Computers become a-bigger-helping-of-Internet

Blog: blogs.cisco.com/sp/a-bigger-helping-of-internet-please
FD.io: www.fd.io

Internet
Services



Aside: How does it fit into building the new Internet infrastructure..
An example - CleanSlate build “TeraStream”

RIPE67 – talk by Peter Lothberg “TeraStream – A Simplified IP Network Service Delivery Model”

https://ripe67.ripe.net/presentations/131-ripe2-2.pdf

https://ripe67.ripe.net/archives/video/3/

“Software Defined X” movement

Software Defined Operators

Software Defined Networking

…



Introducing	Fast	Data:	fd.io

• New	project	in	Linux	Foundation
• Multi-party

• Multi-project

• What	does	multi-party	mean?
• Multiple	members	- Open	to	all

• What	does	multi-project	mean?
• Multiple	subprojects

• Subproject	autonomy

• Cross	project	synergy

• Open	to	new	subprojects

• Anyone	can	propose	a	subproject

• Allows	for	innovation
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Create	a	Platform	that	enables	Data	Plane	Services	

that	are:
Highly	performant

Modular	and	extensible

Open	source	

Interoperable

Multi-Vendor

Platform	fosters	innovation	and	synergistic	

interoperability	between	Data	Plane	Services

Source	of	Continuous	Integration	resources	for	Data	

Plane	services based	on	the	Consortium’s	

project/subprojects

Meet	the	functionality	needs	of	developers,	deployers,	

datacenter	operators

fd.io Charter

www.fd.io

wiki.fd.io

git.fd.io

gerrit.fd.io

jira.fd.io

jenkins.fd.io



Introducing	Vector	Packet	Processor	- VPP

• VPP	is	a	rapid	packet	processing	development	platform	for	highly	
performing	network	applications.

• It	runs	on	commodity	CPUs	and	leverages	DPDK

• It	creates	a	vector	of	packet	indices	and	processes	them	using	a	
directed	graph	of	nodes	– resulting	in	a	highly	performant	solution.

• Runs	as	a	Linux	user-space	application

• Ships	as	part	of	both	embedded	&	server	products,	in	volume

• Active	development	since	2002
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Network	IO

Packet	Processing

Data	Plane	Management	 Agent

Bare	Metal/VM/Container



VPP Architecture -
Modularity Enabling Flexible Plugins
Plugins == Subprojects
Plugins can:

• Introduce new graph nodes
• Rearrange packet processing graph
• Can be built independently of VPP source tree
• Can be added at runtime (drop into plugin 

directory)
• All in user space

Enabling:
• Ability to take advantage of diverse hardware 

when present
• Support for multiple processor architectures (x86, 

ARM, PPC)
• Few dependencies on the OS (clib) allowing 

easier ports to other Oses/Env

ethernet-input

ip6-input
ip4input

mpls-ethernet-input

arp-input

llc-input

…

ip6-lookup

ip6-rewrite-transmit
ip6-local

…

Packet	vector

Plug-in	 to	create	new	nodes

Custom-A Custom-B

Plug-in	 to	

enable	new	HW	

input	 Nodes



VPP	Feature	Summary
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14+ MPPS, single core
Multimillion entry FIBs
Source RPF
Thousands of VRFs

Controlled cross-VRF 
lookups
Multipath – ECMP and Unequal 
Cost
Multiple million Classifiers –

Arbitrary N-tuple
VLAN Support – Single/Double 
tag
Counters for everything
Mandatory Input Checks:

TTL expiration
header checksum
L2 length < IP length
ARP resolution/snooping
ARP proxy

IPv4/IPv6 IPv4
GRE, MPLS-GRE, NSH-GRE, 
VXLAN
IPSEC
DHCP client/proxy
CG NAT

IPv6
Neighbor discovery
Router Advertisement
DHCPv6 Proxy
L2TPv3
Segment Routing
MAP/LW46 – IPv4aas
iOAM

MPLS
MPLS-o-Ethernet –

Deep label stacks 
supported

L2

VLAN Support
Single/ Double tag
L2 forwarding with 

EFP/BridgeDomain concepts
VTR – push/pop/Translate 
(1:1,1:2, 2:1,2:2)
Mac Learning – default limit of 
50k addresses
Bridging – Split-horizon group 
support/EFP Filtering
Proxy Arp
Arp termination
IRB – BVI Support with 
RouterMac assignment
Flooding
Input ACLs
Interface cross-connect



• They are just a little BIT different
• They are all about processing packets

• At 10GE, 64B frames can arrive at 14.88Mfps – that’s 67nsec per frame.

• With 2GHz CPU core each clock cycle is 0.5nsec – that’s 134 clock cycles per frame.

• BUT it takes ~70nsec to access memory – not much time to do work if waiting for memory access.

• Efficiency of dealing with packets within the computer is essential 
• Moving packets:

• Packets arrive on physical interfaces (NICs) and virtual interfaces (VNFs) - need CPU optimized drivers for 
both.

• Drivers and buffer management software must not rely on memory access – see time budget above.

• Processing packets:

• Header manipulation, encaps/decaps, lookups, classifiers, counters.

• Need packet processing optimized for CPU platforms

• CONCLUSION - Need to pay attention to Computer efficiency for Network 
workloads
• Computer efficiency for x86-64 = close to optimal use of x86-64 uarchitectures: core and uncore

resources

Network workloads vs. compute workloads
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DEVNET-1221

What is Vector Packet Processing?
• High performance packet-processing stack for commodity CPUs

• x86_64, ppc-64-BE, aarch64-LE
• Endian clean, 32 / 64-bit clean
• Linux user-mode process
• Leverage DPDK, widely-available kernel modules 

• (uio, igb_uio, uio_pci_generic)

• Linux user-space 
• Same image works in a VM, over a host kernel, in an LXC
• Physical NICs via PCI direct-map

• Active development since 2002

• Ships as part of Cisco embedded and server products, in volume
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DEVNET-1221

Packet Processing on Commodity Hardware

• Packet-processing: load/store-intensive, big tables, N-tuple problems

• PP on CH: significantly different than PP on NPUs
• NPU: e.g. 2048 outstanding prefetches, SRAM
• Commodity HW: 8 → 16 outstanding prefetches, DDRn
• NPU: thousands of PPEs processing single packets
• Commodity HW: tens of general-purpose cores
• NPU: work distributor, TCAM, specialized counter support, QoS / queueing support

• VPP solves these problems—or a useful subset—on commodity hardware
• Structure the computation for CH’s convenience
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DEVNET-1221

Scalar Packet Processing
• A fancy name for processing one packet at a time

• Traditional, straightforward implementation scheme
• Interrupt, a calls b calls c … return return return RFI
• Considerable stack depth

• Issue #1: thrashing the I-cache 
• When code path length exceeds the primary I-cache size, each packet incurs an identical set of I-

cache misses
• Only workaround: bigger caches
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DEVNET-1221

Scalar Packet Processing, cont’d

• Dependent read latency on big forwarding tables
• Example: 4 x 8 mtrie walk. Assume tables do not fit in cache.
• Lookup 5.6.7.8: read root_ply[5], then ply_2[6], the ply_3[7], the ply_4[8]
• Big tables: reads stall for ~170 clocks

• Few opportunities to mitigate (“prefetch around”) read latency stalls
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DEVNET-1221

Vector Packet Processing

• Process more than one packet at a time
• Grab all available packets from device RX ring
• Form a “frame” (vector) comprising packet indices in RX order
• Process frames using a directed graph of nodes

• What does this reorganization accomplish?
• Fixes the I-cache thrashing problem
• Allows us to mitigate the dependent read latency problem
• “Circuit time” reaches a (stable) equilibrium value based on offered load
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DEVNET-1221

Vector Packet Processing I-Cache Effect

• Since each graph node processes more than one packet
• First packet warms up the I-cache
• All other packets hit in the I-cache
• Warm up the CPU branch predictor
• Node dispatch functions typically comprise ~150 lines of code

• First choice: f(x) fits in the L0 I-cache
• Second choice: multiple foreach_vector_element passes
• Third choice: use multiple nodes
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DEVNET-1221

Graph Scheduler

• Always process vector elements in order

• Run-to-completion, until all vector elements have been disposed of

• As vector size increases, processing cost per pkt decreases
• Amortize I-cache misses over a larger N

• Stable vector size equilibrium
• Start with vector size in equilibrium
• Add a delay: clock-tick interrupt or similar
• Vector size increases, but cost/pkt decreases
• Computation returns to the previous equilibrium vector size
• Consistent per-packet latency
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DEVNET-1221

Exploiting Multiple Cores

• Embarrassing parallelism
• Ingress flow hashing (e.g. h/w RSS hash onto multiple RX queues)
• N x worker threads: node graph replicas 
• H/W-permitting: N x TX queues
• Easy to spin up, configure problem-specific threads

• Counters
• Unsigned short per-worker-thread non-atomic counters
• Overflow: 64-bit atomic add 
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DEVNET-1221

Control-Plane Binary APIs
• API generator—yacc + hand-rolled lexical analyzer

• Header file: API version signature, message enumeration, C typedefs, etc.

• Two transport types
• Unidirectional queues in shared memory, stream sockets

• All message data in network byte order

• Asynchronous messaging, per-message “context” opaque

• Program ~700k routes/second into the ip4 FIB

• Client library: connect / disconnect from the data plane

• Plugins can / ordinarily do define their own control-plane APIs

• Trace, pretty-print, scriptify, replay long sequences. Post-mortem capture.

18



So what does this mean ?



FD.io Design Engineering by Benchmarking 
Continuous Performance Lab (CPL) Develop

Submit	
Patch

Automated	
Testing

DeployFully automated testing infrastructure
§ Covers both programmability and data planes
§ Code breakage and performance degradations identified before patch review
§ Review, commit and release resource protected

Continuous Functional Testing
§ Virtual testbeds with network topologies
§ Continuous verification of functional conformance
§ Highly parallel test execution

Continuous Software and Hardware Benchmarking
§ Server based hardware testbeds
§ Continuous integration process with real hardware verification

§ Server models, CPU models, NIC models

Implemented in FD.io CSIT project



• What it is all about – CSIT aspirations
• FD.io VPP benchmarking

• VPP functionality per specifications (RFCs1)
• VPP performance and efficiency (PPS2, CPP3)

• Network data plane - throughput Non-Drop Rate, bandwidth, PPS, packet delay
• Network Control Plane, Management Plane Interactions (memory leaks!)

• Performance baseline references for HW + SW stack (PPS2, CPP3)
• Range of deterministic operation for HW + SW stack (SLA4)

• Provide testing platform and tools to FD.io VPP dev and usr community
• Automated functional and performance tests
• Automated telemetry feedback with conformance, performance and efficiency metrics

• Help to drive good practice and engineering discipline into FD.io VPP dev community
• Drive innovative optimizations into the source code – verify they work
• Enable innovative functional, performance and efficiency additions & extensions
• Make progress faster
• Prevent unnecessary code “harm”

FD.io Continuous Performance Lab
a.k.a. The CSIT Project (Continuous System Integration and Testing)

Legend:
1 RFC – Request For Comments – IETF Specs basically
2 PPS – Packets Per Second
3 CPP – Cycles Per Packet (metric of packet processing efficiency)
4 SLA – Service Level Agreement



CSIT/VPP-v16.06	Report

https://wiki.fd.io/view/CSIT/VPP-16.06_Test_Report

1	Introduction
2	Functional	tests	description
3	Performance	tests	description
4	Functional	tests	environment

5	Performance	tests	environment
6	Functional	tests	results
6.1	L2	Bridge-Domain
6.2	L2	Cross-Connect
6.3	Tagging
6.4	VXLAN

6.5	IPv4	Routing
6.6	DHCPv4
6.7	IPv6	Routing
6.8	COP	Address	Security
6.9	GRE	Tunnel
6.10	LISP

7	Performance	tests	results
7.1	VPP	Trend	Graphs	RFC2544:NDR
7.2	VPP	Trend	Graphs	RFC2544:PDR
7.3	Long	Performance	Tests	- NDR	and	PDR	Search
7.4	Short	Performance	Tests	- ref-NDR	Verification

• Testing coverage summary
• L2, IPv4, IPv6
• Tunneling
• Stateless security

• Non Drop Rate Throughput
• 8Mpps to10Mpps per CPU core at 

2.3GHz*
• No HyperThreading

• Improvements since v16.06
• 10Mpps to 12Mpps per CPU core at 

2.3GHz*
• With HyperThreading gain ~10%
• See next slides

*CPU	core	2.3GHz	– Intel	XEON	E5-2699v3,	https://wiki.fd.io/view/CSIT/CSIT_LF_testbed



Compute	Node	Hardware UCS	C240	M4SX	– 2-CPU
Chipset	 Intel®	C610	series	chipset

CPU 2x	Intel®	Xeon®	Processor	E5-2698	v3	(each	with	16	

CPU	cores,	clocked at 2.6GHz,	40MB	Last	Level	Cache)

Memory	 2133	MHz,	128	GB	Total

NICs	 6x	2p40GE	Intel®	XL710	Network	Interface	Cards

12x	40GE	=	480GE	of	external	network	I/O

Compute	Node	Software Version	

Host	Operating	System	 Ubuntu	14.04.3	LTS

Kernel	version:	3.13.0-63-generic

DPDK	 DPDK	16.4

FD.io	VPP VPP v16.06

The	Fast	Data	
Project	(FD.io)

A	Computer…

Running	a	Network	Data	Plane	

A	Computer…

Being	a	Router

A	Computer…

Being	part	of	the	Internet	…

...	An	integral	 part	thereof	 !

12x	40GE
interfaces



VPP-based vSwitch in Phy-VS-Phy Topology
Scenario: Comput Host with 12x 40GE interfaces, on 6 NICs
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VPP	Scaling	Up	The	Packet	Throughput	

across	40GE interfaces,	PCIe	Gen3	slots	and	CPU cores
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§ FD.io VPP data plane IPv4 routing on UCS C240-M4 – 2x CPU 2.3GHz, 6x 
2p40GE NIC

§ FD.io VPP supports multi-threading with linear scaling of Mpps and 
Gbps with adding cores and VPP threads

**	IMIX	frame	size	=	(7x	64B,	4x	570B,	1x1518B),	avg.	353.8Bytes

§ With one CPU core per 40GE interface – NIC Gbps max-rate for IMIX 
and above frame sizes

§ With two CPU cores per 40GE interface – NIC Gbps max-rate for 128B 
and above frame sizes

*Throughput	benchmarks	with	VPP	running	IPv4	routed-forwarding	with	1M	IPv4	/32	routes

Ethernet
L2	frame	size**

Ethernet
L2	frame	size**

Non	Drop	Rate	Throughput*	- Zero	Packet	Loss	- Gigabits	per	second		[Gbps]

Nx	2p40GE	NIC	max-rate,	N=1-6 Nx	2p40GE	NIC	max-rate,	N=1-6

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)
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VPP	Scaling	Up	The	Packet	Throughput	

across	40GE interfaces,	PCIe	Gen3	slots	and	CPU cores

Non	Drop	Rate	Throughput*	- Zero	Packet	Loss	– Mega	packets	per	second		[Mpps]

[Mpps] [Mpps]

§ FD.io VPP data plane IPv4 routing on UCS C240-M4 – 2x CPU 2.3GHz, 6x 
2p40GE NIC

§ FD.io VPP supports multi-threading with linear scaling of Mpps and 
Gbps with adding cores and VPP threads

**	IMIX	frame	size	=	(7x	64B,	4x	570B,	1x1518B),	avg.	353.8Bytes

§ With one CPU core per 40GE interface – NIC Mpps max-rate for IMIX 
and above frame sizes

§ With two CPU cores per 40GE interface – NIC Mpps max-rate for 64B 
and above frame sizes

*Throughput	benchmarks	with	VPP	running	IPv4	routed-forwarding	with	1M	IPv4	/32	routes

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

Nx	2p40GE	NIC	max-rate,	N=1-6 Nx	2p40GE	NIC	max-rate,	N=1-6



• Modern	IP	router	data	plane	out-of-the-box

• Advanced,	modular,	scales,	optimized	SW-HW	interface

• A	platform	to	build	on

• All	sorts	of	crypto	and	tunneling	things

• ILA	at	IETF96	Hackathon	in	Berlin

• ILA	in	XDP	and	VPP,	https://tools.ietf.org/html/draft-h erbert-nvo3-ila-02

• Telemetry	– apps,	users,	flows,	…

• Modern	TCP	stack	anyone?

• E.g.	TCP	ex-machina,	Keith	Winstein	https://github.com/tcpexmachina/remy

• …

FD.io	VPP	– A	Platform	for	Interesting	Work	…



Next	Steps	– Get	Involved
We	invite	you	to	Participate	in	fd.io

• Get	the	Code,	Build	the	Code,	Run	the	Code

• Read/Watch	the	Tutorials

• Join	the	Mailing	Lists

• Join	the	IRC	Channels

• Explore	the	wiki

• Join	fd.io	as	a	member
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Q&A



A	Parable	to	Read	...

• A	short	history	of	a	system	design	use	case
• A	railway	company	designing	a	train	system

• A	manuscript	 written	in	the	middle	of	year	1973

• Published	 in	year	1976	– was	still	applicable

• Cited	 later	 today	(	year	2012,	2016	)	– and	still	applies

• URL	link
• http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD594.html

• Authored	by	
• http://translate.google.com/#nl|en|Edsger%20Wybe%20Dijkstra

• http://en.wikipedia.org/wiki/Edsger_W._Dijkstra


