
FD.io VPP Overview
Maciek Konstantynowicz, an Engineer

mkonstan@cisco.com
maciek@cisco.com

How to Push Extreme Limits of Performance and Scale
with Vector Packet Processing Technology

Evolution	of	Programmable	Networking

• Many	industries	are	transitioning	to	a	more	dynamic	model	
to	deliver	network	services

• The	great	unsolved	problem	is	how	to	deliver	network	
services	in	this	more	dynamic	environment

• Inordinate	attention	has	been	focused	on	the	non-local	
network	control	plane	(controllers)

• Necessary,	but	insufficient

• There	is	a	giant	gap	in	the	capabilities	that	foster	delivery	of	
dynamic	Data	Plane	Services

fd.io	Foundation 2

Programmable	 Data	Plane

FD.io - Fast Data input/output – for Internet Packets and Services
What is it about – continuing the evolution of Computers and Networks:

Computers => Networks => Networks of Computers => Internet of Computers

Networks in Computers – Requires efficient packet processing in Computers

Enabling modular and scalable Internet packet services in the Cloud of Computers – routing, bridging, tunneling and servicing packets in CPUs

Making Computers be part of the Network, making Computers become a-bigger-helping-of-Internet

Blog: blogs.cisco.com/sp/a-bigger-helping-of-internet-please
FD.io: www.fd.io

Internet
Services

Aside: How does it fit into building the new Internet infrastructure..
An example - CleanSlate build “TeraStream”

RIPE67 – talk by Peter Lothberg “TeraStream – A Simplified IP Network Service Delivery Model”

https://ripe67.ripe.net/presentations/131-ripe2-2.pdf

https://ripe67.ripe.net/archives/video/3/

“Software Defined X” movement

Software Defined Operators

Software Defined Networking

…

Introducing	Fast	Data:	fd.io

• New	project	in	Linux	Foundation
• Multi-party

• Multi-project

• What	does	multi-party	mean?
• Multiple	members	- Open	to	all

• What	does	multi-project	mean?
• Multiple	subprojects

• Subproject	autonomy

• Cross	project	synergy

• Open	to	new	subprojects

• Anyone	can	propose	a	subproject

• Allows	for	innovation

fd.io	Foundation 5

Create	a	Platform	that	enables	Data	Plane	Services	

that	are:
Highly	performant

Modular	and	extensible

Open	source	

Interoperable

Multi-Vendor

Platform	fosters	innovation	and	synergistic	

interoperability	between	Data	Plane	Services

Source	of	Continuous	Integration	resources	for	Data	

Plane	services based	on	the	Consortium’s	

project/subprojects

Meet	the	functionality	needs	of	developers,	deployers,	

datacenter	operators

fd.io Charter

www.fd.io

wiki.fd.io

git.fd.io

gerrit.fd.io

jira.fd.io

jenkins.fd.io

Introducing	Vector	Packet	Processor	- VPP

• VPP	is	a	rapid	packet	processing	development	platform	for	highly	
performing	network	applications.

• It	runs	on	commodity	CPUs	and	leverages	DPDK

• It	creates	a	vector	of	packet	indices	and	processes	them	using	a	
directed	graph	of	nodes	– resulting	in	a	highly	performant	solution.

• Runs	as	a	Linux	user-space	application

• Ships	as	part	of	both	embedded	&	server	products,	in	volume

• Active	development	since	2002

fd.io	Foundation 6

Network	IO

Packet	Processing

Data	Plane	Management	 Agent

Bare	Metal/VM/Container

VPP Architecture -
Modularity Enabling Flexible Plugins
Plugins == Subprojects
Plugins can:

• Introduce new graph nodes
• Rearrange packet processing graph
• Can be built independently of VPP source tree
• Can be added at runtime (drop into plugin

directory)
• All in user space

Enabling:
• Ability to take advantage of diverse hardware

when present
• Support for multiple processor architectures (x86,

ARM, PPC)
• Few dependencies on the OS (clib) allowing

easier ports to other Oses/Env

ethernet-input

ip6-input
ip4input

mpls-ethernet-input

arp-input

llc-input

…

ip6-lookup

ip6-rewrite-transmit
ip6-local

…

Packet	vector

Plug-in	 to	create	new	nodes

Custom-A Custom-B

Plug-in	 to	

enable	new	HW	

input	 Nodes

VPP	Feature	Summary

fd.io Foundation 8

14+ MPPS, single core
Multimillion entry FIBs
Source RPF
Thousands of VRFs

Controlled cross-VRF
lookups
Multipath – ECMP and Unequal
Cost
Multiple million Classifiers –

Arbitrary N-tuple
VLAN Support – Single/Double
tag
Counters for everything
Mandatory Input Checks:

TTL expiration
header checksum
L2 length < IP length
ARP resolution/snooping
ARP proxy

IPv4/IPv6 IPv4
GRE, MPLS-GRE, NSH-GRE,
VXLAN
IPSEC
DHCP client/proxy
CG NAT

IPv6
Neighbor discovery
Router Advertisement
DHCPv6 Proxy
L2TPv3
Segment Routing
MAP/LW46 – IPv4aas
iOAM

MPLS
MPLS-o-Ethernet –

Deep label stacks
supported

L2

VLAN Support
Single/ Double tag
L2 forwarding with

EFP/BridgeDomain concepts
VTR – push/pop/Translate
(1:1,1:2, 2:1,2:2)
Mac Learning – default limit of
50k addresses
Bridging – Split-horizon group
support/EFP Filtering
Proxy Arp
Arp termination
IRB – BVI Support with
RouterMac assignment
Flooding
Input ACLs
Interface cross-connect

• They are just a little BIT different
• They are all about processing packets

• At 10GE, 64B frames can arrive at 14.88Mfps – that’s 67nsec per frame.

• With 2GHz CPU core each clock cycle is 0.5nsec – that’s 134 clock cycles per frame.

• BUT it takes ~70nsec to access memory – not much time to do work if waiting for memory access.

• Efficiency of dealing with packets within the computer is essential
• Moving packets:

• Packets arrive on physical interfaces (NICs) and virtual interfaces (VNFs) - need CPU optimized drivers for
both.

• Drivers and buffer management software must not rely on memory access – see time budget above.

• Processing packets:

• Header manipulation, encaps/decaps, lookups, classifiers, counters.

• Need packet processing optimized for CPU platforms

• CONCLUSION - Need to pay attention to Computer efficiency for Network
workloads
• Computer efficiency for x86-64 = close to optimal use of x86-64 uarchitectures: core and uncore

resources

Network workloads vs. compute workloads

PCIe

CPU Cores

CPU Socket

M
em

ory	Controller

DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	 operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

DEVNET-1221

What is Vector Packet Processing?
• High performance packet-processing stack for commodity CPUs

• x86_64, ppc-64-BE, aarch64-LE
• Endian clean, 32 / 64-bit clean
• Linux user-mode process
• Leverage DPDK, widely-available kernel modules

• (uio, igb_uio, uio_pci_generic)

• Linux user-space
• Same image works in a VM, over a host kernel, in an LXC
• Physical NICs via PCI direct-map

• Active development since 2002

• Ships as part of Cisco embedded and server products, in volume

10

DEVNET-1221

Packet Processing on Commodity Hardware

• Packet-processing: load/store-intensive, big tables, N-tuple problems

• PP on CH: significantly different than PP on NPUs
• NPU: e.g. 2048 outstanding prefetches, SRAM
• Commodity HW: 8 → 16 outstanding prefetches, DDRn
• NPU: thousands of PPEs processing single packets
• Commodity HW: tens of general-purpose cores
• NPU: work distributor, TCAM, specialized counter support, QoS / queueing support

• VPP solves these problems—or a useful subset—on commodity hardware
• Structure the computation for CH’s convenience

11

DEVNET-1221

Scalar Packet Processing
• A fancy name for processing one packet at a time

• Traditional, straightforward implementation scheme
• Interrupt, a calls b calls c … return return return RFI
• Considerable stack depth

• Issue #1: thrashing the I-cache
• When code path length exceeds the primary I-cache size, each packet incurs an identical set of I-

cache misses
• Only workaround: bigger caches

12

DEVNET-1221

Scalar Packet Processing, cont’d

• Dependent read latency on big forwarding tables
• Example: 4 x 8 mtrie walk. Assume tables do not fit in cache.
• Lookup 5.6.7.8: read root_ply[5], then ply_2[6], the ply_3[7], the ply_4[8]
• Big tables: reads stall for ~170 clocks

• Few opportunities to mitigate (“prefetch around”) read latency stalls

13

DEVNET-1221

Vector Packet Processing

• Process more than one packet at a time
• Grab all available packets from device RX ring
• Form a “frame” (vector) comprising packet indices in RX order
• Process frames using a directed graph of nodes

• What does this reorganization accomplish?
• Fixes the I-cache thrashing problem
• Allows us to mitigate the dependent read latency problem
• “Circuit time” reaches a (stable) equilibrium value based on offered load

14

DEVNET-1221

Vector Packet Processing I-Cache Effect

• Since each graph node processes more than one packet
• First packet warms up the I-cache
• All other packets hit in the I-cache
• Warm up the CPU branch predictor
• Node dispatch functions typically comprise ~150 lines of code

• First choice: f(x) fits in the L0 I-cache
• Second choice: multiple foreach_vector_element passes
• Third choice: use multiple nodes

15

DEVNET-1221

Graph Scheduler

• Always process vector elements in order

• Run-to-completion, until all vector elements have been disposed of

• As vector size increases, processing cost per pkt decreases
• Amortize I-cache misses over a larger N

• Stable vector size equilibrium
• Start with vector size in equilibrium
• Add a delay: clock-tick interrupt or similar
• Vector size increases, but cost/pkt decreases
• Computation returns to the previous equilibrium vector size
• Consistent per-packet latency

16

DEVNET-1221

Exploiting Multiple Cores

• Embarrassing parallelism
• Ingress flow hashing (e.g. h/w RSS hash onto multiple RX queues)
• N x worker threads: node graph replicas
• H/W-permitting: N x TX queues
• Easy to spin up, configure problem-specific threads

• Counters
• Unsigned short per-worker-thread non-atomic counters
• Overflow: 64-bit atomic add

17

DEVNET-1221

Control-Plane Binary APIs
• API generator—yacc + hand-rolled lexical analyzer

• Header file: API version signature, message enumeration, C typedefs, etc.

• Two transport types
• Unidirectional queues in shared memory, stream sockets

• All message data in network byte order

• Asynchronous messaging, per-message “context” opaque

• Program ~700k routes/second into the ip4 FIB

• Client library: connect / disconnect from the data plane

• Plugins can / ordinarily do define their own control-plane APIs

• Trace, pretty-print, scriptify, replay long sequences. Post-mortem capture.

18

So what does this mean ?

FD.io Design Engineering by Benchmarking
Continuous Performance Lab (CPL) Develop

Submit	
Patch

Automated	
Testing

DeployFully automated testing infrastructure
§ Covers both programmability and data planes
§ Code breakage and performance degradations identified before patch review
§ Review, commit and release resource protected

Continuous Functional Testing
§ Virtual testbeds with network topologies
§ Continuous verification of functional conformance
§ Highly parallel test execution

Continuous Software and Hardware Benchmarking
§ Server based hardware testbeds
§ Continuous integration process with real hardware verification

§ Server models, CPU models, NIC models

Implemented in FD.io CSIT project

• What it is all about – CSIT aspirations
• FD.io VPP benchmarking

• VPP functionality per specifications (RFCs1)
• VPP performance and efficiency (PPS2, CPP3)

• Network data plane - throughput Non-Drop Rate, bandwidth, PPS, packet delay
• Network Control Plane, Management Plane Interactions (memory leaks!)

• Performance baseline references for HW + SW stack (PPS2, CPP3)
• Range of deterministic operation for HW + SW stack (SLA4)

• Provide testing platform and tools to FD.io VPP dev and usr community
• Automated functional and performance tests
• Automated telemetry feedback with conformance, performance and efficiency metrics

• Help to drive good practice and engineering discipline into FD.io VPP dev community
• Drive innovative optimizations into the source code – verify they work
• Enable innovative functional, performance and efficiency additions & extensions
• Make progress faster
• Prevent unnecessary code “harm”

FD.io Continuous Performance Lab
a.k.a. The CSIT Project (Continuous System Integration and Testing)

Legend:
1 RFC – Request For Comments – IETF Specs basically
2 PPS – Packets Per Second
3 CPP – Cycles Per Packet (metric of packet processing efficiency)
4 SLA – Service Level Agreement

CSIT/VPP-v16.06	Report

https://wiki.fd.io/view/CSIT/VPP-16.06_Test_Report

1	Introduction
2	Functional	tests	description
3	Performance	tests	description
4	Functional	tests	environment

5	Performance	tests	environment
6	Functional	tests	results
6.1	L2	Bridge-Domain
6.2	L2	Cross-Connect
6.3	Tagging
6.4	VXLAN

6.5	IPv4	Routing
6.6	DHCPv4
6.7	IPv6	Routing
6.8	COP	Address	Security
6.9	GRE	Tunnel
6.10	LISP

7	Performance	tests	results
7.1	VPP	Trend	Graphs	RFC2544:NDR
7.2	VPP	Trend	Graphs	RFC2544:PDR
7.3	Long	Performance	Tests	- NDR	and	PDR	Search
7.4	Short	Performance	Tests	- ref-NDR	Verification

• Testing coverage summary
• L2, IPv4, IPv6
• Tunneling
• Stateless security

• Non Drop Rate Throughput
• 8Mpps to10Mpps per CPU core at

2.3GHz*
• No HyperThreading

• Improvements since v16.06
• 10Mpps to 12Mpps per CPU core at

2.3GHz*
• With HyperThreading gain ~10%
• See next slides

*CPU	core	2.3GHz	– Intel	XEON	E5-2699v3,	https://wiki.fd.io/view/CSIT/CSIT_LF_testbed

Compute	Node	Hardware UCS	C240	M4SX	– 2-CPU
Chipset	 Intel®	C610	series	chipset

CPU 2x	Intel®	Xeon®	Processor	E5-2698	v3	(each	with	16	

CPU	cores,	clocked at 2.6GHz,	40MB	Last	Level	Cache)

Memory	 2133	MHz,	128	GB	Total

NICs	 6x	2p40GE	Intel®	XL710	Network	Interface	Cards

12x	40GE	=	480GE	of	external	network	I/O

Compute	Node	Software Version	

Host	Operating	System	 Ubuntu	14.04.3	LTS

Kernel	version:	3.13.0-63-generic

DPDK	 DPDK	16.4

FD.io	VPP VPP v16.06

The	Fast	Data	
Project	(FD.io)

A	Computer…

Running	a	Network	Data	Plane	

A	Computer…

Being	a	Router

A	Computer…

Being	part	of	the	Internet	…

...	An	integral	 part	thereof	 !

12x	40GE
interfaces

VPP-based vSwitch in Phy-VS-Phy Topology
Scenario: Comput Host with 12x 40GE interfaces, on 6 NICs

IXIA

VPP Host

40GE
001

Phy
1/12

dpdk

FortyGig
a/0/0

MGMT

Cisco LAN

Phy
2/12

dpdk

FortyGig
a/0/1

Phy
3/12

dpdk

FortyGig
d/0/0

Phy
4/12

dpdk

FortyGig
d/0/1

Phy
5/12

dpdk

FortyGig
f/0/0

Phy
6/12

dpdk

FortyGig
f/0/1

Phy
7/12

dpdk

FortyGig
84/0/0

Phy
8/12

dpdk

FortyGig
84/0/1

Phy
9/12

dpdk

FortyGig
86/0/0

Phy
10/12

dpdk

FortyGig
86/0/1

Phy
10/12

dpdk

FortyGig
88/0/0

Phy
10/12

dpdk

FortyGig
88/0/1

40GE
002

40GE
003

40GE
004

40GE
005

40GE
006

Eth0

40GE
007

40GE
008

40GE
009

40GE
010

40GE
011

40GE
012

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

L2,
IPv4,
IPv6

Internet

numa0 numa1
Host

UCS	C240M4

2x	CPU
XEON

E5-2698v3

VPP	Scaling	Up	The	Packet	Throughput	

across	40GE interfaces,	PCIe	Gen3	slots	and	CPU cores

64B

128B

IMIX
1518B
NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

[Gbps]

64B

128B

IMIX
1518B
NIC	max-bw

0.0

50.0

100.0

150.0

200.0

250.0

300.0

2x	40GE
4	core 4x	40GE

8	core 6x	40GE
12	core 8x	40GE

16	core 10x	40GE
20	core 12x	40GE

24	core

[Gbps]

§ FD.io VPP data plane IPv4 routing on UCS C240-M4 – 2x CPU 2.3GHz, 6x
2p40GE NIC

§ FD.io VPP supports multi-threading with linear scaling of Mpps and
Gbps with adding cores and VPP threads

**	IMIX	frame	size	=	(7x	64B,	4x	570B,	1x1518B),	avg.	353.8Bytes

§ With one CPU core per 40GE interface – NIC Gbps max-rate for IMIX
and above frame sizes

§ With two CPU cores per 40GE interface – NIC Gbps max-rate for 128B
and above frame sizes

*Throughput	benchmarks	with	VPP	running	IPv4	routed-forwarding	with	1M	IPv4	/32	routes

Ethernet
L2	frame	size**

Ethernet
L2	frame	size**

Non	Drop	Rate	Throughput*	- Zero	Packet	Loss	- Gigabits	per	second		[Gbps]

Nx	2p40GE	NIC	max-rate,	N=1-6 Nx	2p40GE	NIC	max-rate,	N=1-6

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

64B

128B

IMIX

1518B
NIC	max-pps

0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
2	core 4x	40GE

4	core 6x	40GE
6	core 8x	40GE

8	core 10x	40GE
10	core 12x	40GE

12	core

64B

128B

IMIX

1518B
NIC	max-pps

0.0

50.0

100.0

150.0

200.0

250.0

2x	40GE
4	core 4x	40GE

8	core 6x	40GE
12	core 8x	40GE

16	core 10x	40GE
20	core 12x	40GE

24	core

VPP	Scaling	Up	The	Packet	Throughput	

across	40GE interfaces,	PCIe	Gen3	slots	and	CPU cores

Non	Drop	Rate	Throughput*	- Zero	Packet	Loss	– Mega	packets	per	second		[Mpps]

[Mpps] [Mpps]

§ FD.io VPP data plane IPv4 routing on UCS C240-M4 – 2x CPU 2.3GHz, 6x
2p40GE NIC

§ FD.io VPP supports multi-threading with linear scaling of Mpps and
Gbps with adding cores and VPP threads

**	IMIX	frame	size	=	(7x	64B,	4x	570B,	1x1518B),	avg.	353.8Bytes

§ With one CPU core per 40GE interface – NIC Mpps max-rate for IMIX
and above frame sizes

§ With two CPU cores per 40GE interface – NIC Mpps max-rate for 64B
and above frame sizes

*Throughput	benchmarks	with	VPP	running	IPv4	routed-forwarding	with	1M	IPv4	/32	routes

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

40GE	and	CPU	core	configuration
(all	cores	hyperthreaded)

Nx	2p40GE	NIC	max-rate,	N=1-6 Nx	2p40GE	NIC	max-rate,	N=1-6

• Modern	IP	router	data	plane	out-of-the-box

• Advanced,	modular,	scales,	optimized	SW-HW	interface

• A	platform	to	build	on

• All	sorts	of	crypto	and	tunneling	things

• ILA	at	IETF96	Hackathon	in	Berlin

• ILA	in	XDP	and	VPP,	https://tools.ietf.org/html/draft-h erbert-nvo3-ila-02

• Telemetry	– apps,	users,	flows,	…

• Modern	TCP	stack	anyone?

• E.g.	TCP	ex-machina,	Keith	Winstein	https://github.com/tcpexmachina/remy

• …

FD.io	VPP	– A	Platform	for	Interesting	Work	…

Next	Steps	– Get	Involved
We	invite	you	to	Participate	in	fd.io

• Get	the	Code,	Build	the	Code,	Run	the	Code

• Read/Watch	the	Tutorials

• Join	the	Mailing	Lists

• Join	the	IRC	Channels

• Explore	the	wiki

• Join	fd.io	as	a	member

fd.io	Foundation 30

Q&A

A	Parable	to	Read	...

• A	short	history	of	a	system	design	use	case
• A	railway	company	designing	a	train	system

• A	manuscript	 written	in	the	middle	of	year	1973

• Published	 in	year	1976	– was	still	applicable

• Cited	 later	 today	(year	2012,	2016)	– and	still	applies

• URL	link
• http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD594.html

• Authored	by	
• http://translate.google.com/#nl|en|Edsger%20Wybe%20Dijkstra

• http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

