
Wi-Fi Goes to Town: Rapid Picocell
Switching for Rapid Transit

Kyle Jamieson
Princeton University

University College London

London Underground

Tokyo Metro

Princeton “Dinky”

Google/Waymo

1. More people, more mobility
2. More data consumption

How to scale up bits/second/Hertz
network delivers, roadside and trackside?

Two observations
1. Falling analog and digital logic cost à
• ESP8266 $5 Wi-Fi system-on-chip today (tomorrow, ¢?)

Two observations
1. Falling analog and digital logic cost à
• ESP8266 $5 Wi-Fi system-on-chip today (tomorrow, ¢?)

2. Smaller wireless cells yield greater capacity

Overarching challenge: Handover at
vehicular speeds, picocell cell sizes

Wi-Fi Goes to Town

An array of cheap access points serving mobiles

AP 1 AP 2 AP 3

• Controller de-duplicates
uplink packets

Uplink: Can leverage link diversity

Time

AP 3AP 2AP 1

AP 1

AP 2

AP 3

19

15

13

16

18

16

Downlink: Best to Choose one AP

Challenges
1. The real wireless channel is unpredictable

9

1 2 3

Time

Signal
Strength
(dB SNR)

AP 1 AP 2 AP 3

1
2
3

Best AP

20 ms

3 sec.

Real wireless is unpredictable

Need to adapt on a timescale
of < 20 ms (ca. 20 packets)

10

Channel degradation decreases efficiency

11

AP Client

Data aggregate Aggregate airtime
@ 6 Mbit/s

Increased airtime decreases
aggregate throughput

Challenges
1. The real wireless channel is unpredictable

2. Packet buffering inhibits rapid adaptation

12

Possible solution: Move the packets

13

ClientAP 1 AP 2

Data aggregate

Problem: This assumes the ability to
instantly move packets

But moving packets harms throughput

14

ClientAP 1 AP 2

Data aggregate

Wasted airtime

mac80211
subsystem

ath9k Wi-Fi
device driver

Wi-Fi NIC
hardware

Pre-buffering maintains high throughput

• All downlink packets sent to all APs
• Control messages de-queue delivered

packets, increasing efficiency

15

Controller

GO

Challenges
1. The real wireless channel is unpredictable

2. Packet buffering inhibits rapid adaptation

3. Frame aggregation complicates rapid adaptation

16

Wi-Fi frame aggregation

• Aggregates amortize the medium acquisition
performance overhead

17

AP Client

Data aggregate Aggregate airtime
@ 54 Mbit/s

Wi-Fi frame aggregation and
block acknowledgements

18

Sender Receiver

block ack

MPDU

frames 1,2,3

MPDU

frames 2,3,4

partial ack
frame 1

1 2 3 4

sender windowsender window

seqno 1
seqno 2
seqno 3
seqno 4

Problem: Lost block acknowledgements

19

ClientAP 1 AP 2

seqno 1
seqno 2
seqno 3
seqno 4

Block ack 1-4 (lost)

Lost block acknowledgement
halves throughput

AP 2

kernel
AP1 AP3AP2

3
2
1

forward
block ack

AP 1

kernel

Solution: Block ACK forwarding

mac80211
subsystem
ath9k Wi-Fi

device driver

mac80211
subsystem
ath9k Wi-Fi

device driver

Implementation and a first testbed
• 8-AP roadside hotspot

testbed at Princeton

• 25 mph car-driving
experiments on road

21

measured at each AP. We can see the ESNR distribution is
coherent with the location distribution of eight APs deployed
along the roadside.

driving15678 34 2

Figure 9: Experiment setup: we deploy eight WGTT APs
on the third floor of an office building overlooking a side
road with speed limit 25 mph.

Figure 10: Effective SNR heatmap measured at each AP.
In each heatmap the x-axis refers to distance along the road,
y-axis refers to distance across the road.

4.1 Controller

Hardware. The WGTT controller is a Lenovo Thinkpad
T430 laptop [46], equipped with a Intel Core i5-3320M CPU,
8 GB DDR3 RAM, and a 160 GB Solid State Drive (SSD).
We install two USB ethernet adaptors on it, one for LAN
packet processing and another for the WAN.

Implementation. The controller runs Ubuntu Linux v14.04
LTS. We write click elements for our control logic and install
rules blocking the Linux kernel from receiving any packets
received from the NIC, so Click is the only application with
access to the NIC.

4.2 Access Point

Hardware. We build the WGTT AP using a TP-Link N750
AP [26] equipped with an Atheros AR9344 NIC, which mea-
sures the CSI of each incoming frame and forwards it to
the controller for processing. We detach the default omni-
directional antennas of this router and connect it to a 14 dBi,
21-degree beamwidth Laird directional antenna [25] using
a Mini-Circuits ZN3PD-622W-S+ RF splitter-combiner (as
shown in Figure 11).5

5As all cables to the splitter-combiner are short and of equal length,
this results in one spatial stream to the client. We leave the design

Figure 11: The WGTT AP is composed of (a) a directional
antenna that connected to three ports of TP-Link AP via a
splitter (b). (c): the AP is deployed in front of a window.

Implementation. The TP-Link router runs openwrt Chaos
Calmer v15.05.1 [36]. We write click elements for AP con-
trol logic and a click configuration ap.click on it to (i) man-
age the packet queue and (ii) encapsulate uplink packets and
forward them to the controller. The Atheros NIC on the TP-
Link router computes the CSI of each uplink packet (using
the CSI tool [16]), encapsulating the CSI and client infor-
mation into a UDP packet, and delivering this packet to the
controller through the Ethernet.

4.3 Client Association
Like other wireless local area network designs that utilize
“thin APs” coupled with a centralized controller, WGTT APs
all share the same 802.11 basic service set identifier (BSSID),
and so appear as one AP to the client. When a client as-
sociates with the first AP (e.g. AP1), WGTT synchronizes
the association with all APs in the network. To achieve this
goal, we modify hostapd in the user space of the Linux wire-
less system, letting AP1 send the client information (layer-2
address, authorization state etc.) to other APs through the
Ethernet backhaul. Specifically, at the end of the client asso-
ciation with AP1, the hostapd of this AP will receive an as-

sociation callback, signaling that hostapd’s association con-
firmation to the client has been received. AP1 then moves
the client information sta info struct to a new hostapd sta -
add params struct, passing it to the kernel level mac80211
and the driver. We add code to extract the client information
within hostapd sta add params struct of AP1, open a TCP
connection to all other APs in the network, and transmit the
client information sta info to those APs. On the other end,
the receiving AP is listening for this TCP connection. When
the TCP connection is set up, the information in the received
packet is transferred back into a hostapd sta add params
struct and passed into mac80211 and the driver on the re-
ceived AP. Figure 12 illustrates this process.

5. Evaluation
In this section, we first conduct field studies to evaluate the
end-to-end performance of WGTT and compare it with a

and experimentation of a multiple spatial stream roadside AP for
future work.

6

measured at each AP. We can see the ESNR distribution is
coherent with the location distribution of eight APs deployed
along the roadside.

Figure 9: Experiment setup: we deploy eight WGTT APs
on the third floor of an office building overlooking a side
road with speed limit 25 mph.

Figure 10: Effective SNR heatmap measured at each AP.
In each heatmap the x-axis refers to distance along the road,
y-axis refers to distance across the road.

4.1 Controller

Hardware. The WGTT controller is a Lenovo Thinkpad
T430 laptop [46], equipped with a Intel Core i5-3320M CPU,
8 GB DDR3 RAM, and a 160 GB Solid State Drive (SSD).
We install two USB ethernet adaptors on it, one for LAN
packet processing and another for the WAN.

Implementation. The controller runs Ubuntu Linux v14.04
LTS. We write click elements for our control logic and install
rules blocking the Linux kernel from receiving any packets
received from the NIC, so Click is the only application with
access to the NIC.

4.2 Access Point

Hardware. We build the WGTT AP using a TP-Link N750
AP [26] equipped with an Atheros AR9344 NIC, which mea-
sures the CSI of each incoming frame and forwards it to
the controller for processing. We detach the default omni-
directional antennas of this router and connect it to a 14 dBi,
21-degree beamwidth Laird directional antenna [25] using
a Mini-Circuits ZN3PD-622W-S+ RF splitter-combiner (as
shown in Figure 11).5

5As all cables to the splitter-combiner are short and of equal length,
this results in one spatial stream to the client. We leave the design

(a) (b) (c)

Figure 11: The WGTT AP is composed of (a) a directional
antenna that connected to three ports of TP-Link AP via a
splitter (b). (c): the AP is deployed in front of a window.

Implementation. The TP-Link router runs openwrt Chaos
Calmer v15.05.1 [36]. We write click elements for AP con-
trol logic and a click configuration ap.click on it to (i) man-
age the packet queue and (ii) encapsulate uplink packets and
forward them to the controller. The Atheros NIC on the TP-
Link router computes the CSI of each uplink packet (using
the CSI tool [16]), encapsulating the CSI and client infor-
mation into a UDP packet, and delivering this packet to the
controller through the Ethernet.

4.3 Client Association
Like other wireless local area network designs that utilize
“thin APs” coupled with a centralized controller, WGTT APs
all share the same 802.11 basic service set identifier (BSSID),
and so appear as one AP to the client. When a client as-
sociates with the first AP (e.g. AP1), WGTT synchronizes
the association with all APs in the network. To achieve this
goal, we modify hostapd in the user space of the Linux wire-
less system, letting AP1 send the client information (layer-2
address, authorization state etc.) to other APs through the
Ethernet backhaul. Specifically, at the end of the client asso-
ciation with AP1, the hostapd of this AP will receive an as-

sociation callback, signaling that hostapd’s association con-
firmation to the client has been received. AP1 then moves
the client information sta info struct to a new hostapd sta -
add params struct, passing it to the kernel level mac80211
and the driver. We add code to extract the client information
within hostapd sta add params struct of AP1, open a TCP
connection to all other APs in the network, and transmit the
client information sta info to those APs. On the other end,
the receiving AP is listening for this TCP connection. When
the TCP connection is set up, the information in the received
packet is transferred back into a hostapd sta add params
struct and passed into mac80211 and the driver on the re-
ceived AP. Figure 12 illustrates this process.

5. Evaluation
In this section, we first conduct field studies to evaluate the
end-to-end performance of WGTT and compare it with a

and experimentation of a multiple spatial stream roadside AP for
future work.

6

• Commodity Atheros
Wi-Fi cards
• Directional antennas

Wi-Fi works fine when stationary

But Wi-Fi can’t handoff fast enough

Driving, WGTT maintains high throughput

+200%

Next steps
• Scale up AP counts, deploy alongside Princeton campus

light rail line, and campus roads

• Integration with eduroam for automatic association

Thanks and further details
• Grateful for support from a Google Research Award and the

Princeton IP Accelerator Fund

• Further details: see SIGCOMM 2017 paper

• Papers and videos available for public download at the
Princeton PAWS group website:

http://paws.cs.princeton.edu

