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Centralised Control
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Centralised Control is your friend.

• Easy to change the behavior of a network

• You can easily couple network monitoring with network function
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The main OpenFlow monitoring mechanism exposes the per-port and per-
flow counters available in the switches. 6
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Can we send monitoring information to the 
controller only when it makes sense?
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Let’s focus on high-volume traffic clusters
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A common ground first
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Heavy Hitters (HH): a prefix that
contribute with a traffic volume
larger than a given threshold T
during a fixed time interval t .

Hierarchical Heavy Hitter
(HHH): a prefix that exceeds a
threshold T after excluding the
contribution of all its HHH
descendants.

(Hierarchical) Heavy Hitters
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Changes in traffic patterns

Identifying the flows that
contribute the most for the
changes in the traffic patterns
over two consecutive time
intervals.
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A host that contacts at least a
given number of distinct
destinations over a short time
period.

Superspreaders
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HHH and change detection: packets or bytes per second. 
Superspreaders: flows per second. 14

All those network events can be seen as a 
traffic cluster detection problem
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Can we leverage dataplane programmability to assist in 
the detection of those events?
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HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 

Can we leverage dataplane programmability to assist in 
the detection of those events?
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HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 
Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics. 
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in 
the detection of those events?

Wait a minute. Is this a problem?
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Note: probabilistic data structures (i.e., sketches) require large amount of counters to lower 
false positive ratio. 22
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Retrieving a large number of counters from hardware is 
time consuming!!!
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Can we leverage dataplane programmability to assist in 
the detection of those events?
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Can we leverage dataplane programmability to enable in-
network detection of those events?

Can we leverage dataplane programmability to assist in 
the detection of those events?



25 25

As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

Because if you have in-network detection..
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As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

You can directly export the detection result to the control plane. 
Control plane does not have to receive lot of data and understand what is going on.

Because if you have in-network detection..
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Because if you have in-network detection..
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• Prefix tree that grows or collapses: focus on who account for a large share of the traffic. 

• Starting condition: a single node corresponding with zero-length prefix *.
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Elastic Trie in a nutshell
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- counter-Left 
- timestamp 
- counter-Right 
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• The dataplane iteratively refine the responsible IP prefixes: 
the controller can receive a flexible granularity information.

Elastic Trie implications
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• The dataplane iteratively refine the responsible IP prefixes: 
the controller can receive a flexible granularity information.

• Each prefix tree layer can have a different timeout:
trade-off between trie building process and memory consumption.

• By looking at the growing rate of the trie it is possible to: 
identify changes in the traffic patterns.

Elastic Trie implications
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Elastic Trie in action

• We prototyped Elastic Trie in P4 and evaluated with packet traces from an ISP backbone 
and datacenter

• Hierarchical Heavy Hitter: 95% precision with 8KB of memory

• Superspreader: 95% precision with 80KB of memory
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• Elastic Trie enables in-network detection of traffic aggregates

• Push-based monitoring approach

• Suitable for HH, HHH, Superspreader and Change detection.

• Low memory footprint!

• Suitable for match-action architectures
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Conclusions


