
1

Gianni Antichi
gianni.antichi@cl.cam.ac.uk

University of Cambridge

in collaboration with:
J.Kucera, D.A.Popescu, J.Korenek and A.W.Moore

Enabling Event Triggered Monitoring of Traffic
Clusters

mailto:gianni.antichi@cl.cam.ac.uk

2 2

Centralised Control

3

Centralised Control is your friend.

• Easy to change the behavior of a network

• You can easily couple network monitoring with network function

3

4

Centralised Control is your friend.

• Easy to change the behavior of a network

• You can easily couple network monitoring with network function

4

5 5

Lot of data

Lot of data

Lot of data
Lot of data

6

The main OpenFlow monitoring mechanism exposes the per-port and per-
flow counters available in the switches. 6

Lot of data

Lot of data

Lot of data
Lot of data

1. Receive
2. Compute
3. Enforce
4. Receive
5. Compute
6. Enforce
7. Receive
8. ….

7

The main OpenFlow monitoring mechanism exposes the per-port and per-
flow counters available in the switches. 7

Lot of data

Lot of data

Lot of data
Lot of data

1. Receive
2. Compute
3. Enforce
4. Receive
5. Compute
6. Enforce
7. Receive
8. ….

8

Can we send monitoring information to the
controller only when it makes sense?

8

9

Let’s focus on high-volume traffic clusters

9

10 10

A common ground first

11 11

Heavy Hitters (HH): a prefix that
contribute with a traffic volume
larger than a given threshold T
during a fixed time interval t .

Hierarchical Heavy Hitter
(HHH): a prefix that exceeds a
threshold T after excluding the
contribution of all its HHH
descendants.

(Hierarchical) Heavy Hitters

12 12

Changes in traffic patterns

Identifying the flows that
contribute the most for the
changes in the traffic patterns
over two consecutive time
intervals.

13 13

A host that contacts at least a
given number of distinct
destinations over a short time
period.

Superspreaders

14

HHH and change detection: packets or bytes per second.
Superspreaders: flows per second. 14

All those network events can be seen as a
traffic cluster detection problem

15 15

Can we leverage dataplane programmability to assist in
the detection of those events?

16 16

Can we leverage dataplane programmability to assist in
the detection of those events?

17

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J.
Rexford. In ACM SOSR 2017.

17

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals.

Can we leverage dataplane programmability to assist in
the detection of those events?

18

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J.
Rexford. In ACM SOSR 2017.

18

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals.
Focus on heavy hitter only.

Can we leverage dataplane programmability to assist in
the detection of those events?

19

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J.
Rexford. In ACM SOSR 2017.
[2] One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon, Z. Liu, A. Manousis, G. Vorsanger,
V. Sekar, V. Braverman. In ACM SIGCOMM 2016. 19

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals.

Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics.

Can we leverage dataplane programmability to assist in
the detection of those events?

20

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J.
Rexford. In ACM SOSR 2017.
[2] One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon, Z. Liu, A. Manousis, G. Vorsanger,
V. Sekar, V. Braverman. In ACM SIGCOMM 2016. 20

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals.

Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics.
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in
the detection of those events?

21 21

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals.
Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics.
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in
the detection of those events?

Wait a minute. Is this a problem?

22

Note: probabilistic data structures (i.e., sketches) require large amount of counters to lower
false positive ratio. 22

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000 70000 80000

Av
er
ag
e
tim

e
(s
ec
on
ds
)

Number of hardware counters

IBM RackSwitch G8264
NoviSwitch 1132

Retrieving a large number of counters from hardware is
time consuming!!!

23 23

Can we leverage dataplane programmability to assist in
the detection of those events?

24 24

Can we leverage dataplane programmability to enable in-
network detection of those events?

Can we leverage dataplane programmability to assist in
the detection of those events?

25 25

As soon as you detect you can take pre-defined actions.
Good for network reactiveness.

Because if you have in-network detection..

26 26

As soon as you detect you can take pre-defined actions.
Good for network reactiveness.

You can directly export the detection result to the control plane.
Control plane does not have to receive lot of data and understand what is going on.

Because if you have in-network detection..

27 27

Because if you have in-network detection..

28

• Prefix tree that grows or collapses: focus on who account for a large share of the traffic.

• Starting condition: a single node corresponding with zero-length prefix *.

28

Elastic Trie in a nutshell

29

- counter-Left
- timestamp
- counter-Right

29

time

T1

T2

0***

Elastic Trie in action

30 30

1** 0**

Both counterL and
counterR exceed
threshold in T1

Elastic Trie in action

time

T1

T2

0

31 31

1** 0**

11*

counterL exceeds
threshold in T2

Elastic Trie in action

time

T1

T2

0

32 32

1** 0**

11*

Elastic Trie in action

Packet timestamp
>>

Node timestamp

33 33

1** 0**

11*

Elastic Trie in action

Packet timestamp
>>

Node timestamp

34 34

1**

11*

Elastic Trie in action

35 35

• The dataplane iteratively refine the responsible IP prefixes:
the controller can receive a flexible granularity information.

Elastic Trie implications

time

T1

T2

0

36 36

• The dataplane iteratively refine the responsible IP prefixes:
the controller can receive a flexible granularity information.

• Each prefix tree layer can have a different timeout:
trade-off between trie building process and memory consumption.

Elastic Trie implications

time

T1

T2

0

37 37

• The dataplane iteratively refine the responsible IP prefixes:
the controller can receive a flexible granularity information.

• Each prefix tree layer can have a different timeout:
trade-off between trie building process and memory consumption.

• By looking at the growing rate of the trie it is possible to:
identify changes in the traffic patterns.

Elastic Trie implications

time

T1

T2

0

38 38

Elastic Trie in action

• We prototyped Elastic Trie in P4 and evaluated with packet traces from an ISP backbone
and datacenter

• Hierarchical Heavy Hitter: 95% precision with 8KB of memory

• Superspreader: 95% precision with 80KB of memory

41 39Changes can be spotted!!!

-2

-1

0

1

2

3

4

5

6

7

500 1000 1500 2000 2500 3000 3500

Av
er
ag
e
nu
m
be
ro
ft
rie

no
de

ch
an
ge
s

Time (seconds)

DoS attack
Scan attack

Normal condition

Elastic Trie in action

42

• Elastic Trie enables in-network detection of traffic aggregates

• Push-based monitoring approach

• Suitable for HH, HHH, Superspreader and Change detection.

• Low memory footprint!

• Suitable for match-action architectures

40

Conclusions

