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Our hypothesis

The model best describing growth of a network
comprises a mixture of mechanisms...

... and this mixture
may change over time.
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oose a model?
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1. Networks can have same
statistics (e.g. degree
distribution) but dramatically

[N e different properties
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network’s growth

Hmm... What about with
more information than just
7 a shapshot?
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With temporal information of link arrival times, we
can do better!
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=> Can calculate precise likelihood of model, see R.Clegg et al:
Likelihood based assessment of dyn8amic networks (2015)

n=1 graph observations
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Artificial data example

0 Preferential attachment
ki I < 4 with a strength

(exponent) that abruptly

p(t) o
| k;ﬁ t > 1 changes at time T

Model without changepoint found in Krapivsky et al:
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Artificial data example

0 Preferential attachment
ki I < 4 with a strength

(exponent) that abruptly

p(t) o
| k;ﬁ t > 1 changes at time T

Experiment: Create artificial data set with different
/ and try to retrieve it

Model without changepoint found in Krapivsky et al:
Connectivity of Growing Random Networks (2000)
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Estimated changepoint time
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Takeaways

e Often a mixture of mechanisms better describes a
network’s growth rather than a single one.

* [his mixture may change over time, which may tell us
about a network’s response to events as well as longer
term trends.

* Framework for combining these mechanisms gives us a
new way of analysing growing networks
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Framework for Evolving Topology Analysis
https://github.com/narnolddd/FETA3

FETA3::

Thanks for listening!
Questions?

O = ¥

github.com/narnolddd n.a.arnold@qgmul.ac.uk @narnolddd
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