
Detecting Anomalies in Smart IoT Environments
Coseners 2019

31st Multi-Service Networks workshop (MSN 2019)

Roman Kolcun

July 4, 2019

Roman Kolcun
Detecting Anomalies in Smart IoT Environments



Goal of the research

I Design a system capable of detecting anomalies in data
communication of IoT devices in home environment

I Able to detect and inform users that a device in their home is
misbehaving

I Leverage crowdsourcing to generate models of behaviours
(e.g. ML models) (more on this in the next presentation)
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Why data from multiple sources is needed

Figure: No two homes are the same.
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Crowdsourcing

Figure: A figure depicting crowdsourcing.
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Why is it not trivial?

I Communication of a device may depend on
I region
I occupancy of the home
I other devices present on the network
I installed third-party apps

I Creating models in a privacy-preserving manner
I Create and/or refine models on local router/gateway
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How are we going to evaluate it?
There are two test-beds: one in NEU, the other at ICL

Figure: Northeastern University
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How are we going to evaluate it?
There are two test-beds: one in NEU, the other at ICL

Figure: Imperial College London
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Advantages of multiple testbeds

I Data collected in the same way
I It is possible to study differences depending on regions
I Possibility to validate models in multiple locations
I Develop and evaluate algorithms for federated machine

learning
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What is missing?

I There are very few public data-sets
I Most of the papers use the one published by UNSW
I ML models trained on high-end computers
I Complexity and model size is rarely mentioned
I “Smarter” smart devices (i.e. which support third-party apps)

are not considered
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Analysis of collected data

I Usage of encryption
I Analysis of the content of network communication
I We also analyse region-based differences
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Figure: Figure symbolising encryption
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Encryption

I Almost half (46%) of traffic cannot be classified by tools such
as WireShark

I This traffic can be classified using entropy analysis (higher
entropy suggests encrypted data)

I There are some positive trends where none of the devices send
all traffic unencrypted

I However, most of the devices send some traffic unencrypted
I Significant amount of traffic cannot be easily determined and

requires further research
I Usage of encryption also depends on region (e.g. a smart TV

did not use encryption in the UK)
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Analysis of the content

I Personally Identifiable Information (PII)
I Inference of device behaviour
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Figure: Figure symbolising PII
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PII analysis

I We searched for MAC addresses, UUID, names, emails, etc. in
the plaintext communication

I We found several PII exposures (e.g. MAC addresses or device
name)

I A camera was sending a notification using HTTP to a server
in China every time a motion was detected

I Some devices exposed some PII depending on region (e.g. a
smart hub was leaking MAC address in the UK, not in the US)

Roman Kolcun
Detecting Anomalies in Smart IoT Environments



Figure: Krebs cycle (symbolising Inference of device behaviour)
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Inference of device behaviour

I We used machine learning to guess the action a device
performed

I We were able to predict significant amount of actions such as
powering on, issuing a voice command, streaming video, etc.

I There are some regional differences in predictability of actions
I We used these models on “idle” traffic and found that some

cameras are triggered by noise or some ambient movement
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Questions?
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