
Verifying Properties of SDN

Vasileios Klimis, Bernhard Reus, and George Parisis

31st Mul)-Service Networks workshop (MSN 2019)

Klimis - UoS
2

Debugging a network remains a manual, largely unsystematic process

Expensive bugs that might show up rarely are becoming increasingly hard to debug

Art vs. Science
Context-Sensitive POR SDN4

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
3

Why SDN Verification?

Northbound APIs
Network OS

• Complex, Concurrent, Async, Distributed

• Softwarisation

• Open-Sourcing

• Third-party APIs

Context-Sensitive POR SDN4

OpenFlow

Control Plane
Data Plane

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
4

“No packet should loop in my network”
Property:

POR for SDN v15

Table 3: Different acyclic topology settings for verifying absence of loops using the Pyswitch MAC address learning
switch application.

N u m b e r o f s w i t c h e s

N
u

m
b

e
r

o

f

c
l

i
e

n
t

s

3

2

3

97

4

4 5 6 8

5

6

15

No ‘magic bullet’ to debug/verify loops conventionally

Storm Control - Spanning Tree

Example: Loops in an acyclic topology

Art vs. Science
Context-Sensitive POR SDN4

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
5

Algorithmic Verification & Debugging
Context-Sensitive POR SDN4

reactive, incomplete, manual

proactive, exhaustive, automatic

31st Mul)-Service Networks workshop (MSN 2019)

Klimis - UoS
6

match(pkt1)
nomatch(pkt2)
install(rule1)
match(pkt3)

Scalability Challenges of verifying SDN
Context-Sensitive POR SDN4

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
7

Considering all possible event orderings leads to exponential explosion in the state space.
4! interleaved orderings

Scalability Challenges of verifying SDN
Context-Sensitive POR SDN4

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
8

Scalability Challenges of verifying SDN

Significant
amount of
state

Unboundedly many packets

Unbounded number of events due to highly dynamic network state changes

Unbounded interleaved orderings over events

Context-Sensitive POR SDN4

Applying exhaustive analysis to networks even worsen the situation

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
9

Contributions
Context-Sensitive POR SDN4

Synthesise the
independency
and invisibility

constraints

A unified/compact
data structure:

all buffers are merged
into two central views
(Packet/Rule view),

encoded as metadata

Canonicalise
the form of

Data Structure

Soundness
proofs of the

reduction

Data packed in
bit-vectors

31st M
ul)-Service Networks workshop (M

SN 2019)

Klimis - UoS
10

efficiency

efficiency

soundness

Previous Work
Context-Sensitive POR SDN4

Kuai [1]

threads hard-wirings
reducing nondeterminism

restrictive Spec Lang
imposing restrictions on what a
property is allowed to assert about

[1] R. Majumdar, S. Deep Tetali, and Z. Wang, “Kuai: A model checker for soSware-defined networks,” in 2014

Formal Methods in Computer-Aided Design (FMCAD). IEEE, oct 2014,

strong independencies
context-unaware

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS

Two actions are Independent (commutable) == the combined execution of them has the same effect under different interleaved orderings.

POR reduces the size of the state-space to be checked by a model checker, exploiting the commutativity of concurrently executed transitions, which result in the same state when executed in different orders.

Our Proposal
Context-Sensitive POR SDN4

t

s

pruning the state-space

Pragmatic Representation for SDN

adding realism and representativeness to the model

Partial Order Reduction technique
relying on a context-sensitive notion of independence between transitions

This work considers the problem of verifying SDN using:

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
13

SDN as a state machine

pkt In buffer

rcv buffer

rcv buffer

pkt Out buffer

control
buffer

flow
table

Controller
Program

rcv buffer

flow
table

pkt Out buffer

control
buffer

Context-Sensitive POR SDN4

!

The Global Variables

SDN
Controller

CP

pOb pOb
cb

rb

ft

rb

rb

cb

ft

pIb

The State of the System

rcv
buffer

pkt
Out

buffer flow
table

pkt In

buffer

ctrl
buffer

State
Data-Plane

State

Switches

Context-Sensitive POR SDN4

CP

31st Multi-Service Networks workshop (MSN 2019)

End-hosts
rcv-buffer

CP

rb

rb

cb

ft

pOb

pIb

rb

cb

ft

pOb

Control Plane
Data Plane

Klimis - UoS

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
15

STATIC PRE – ANALYSIS

• Abstract away the details irrelevant to property

• Precompute the set of the silent actions against the
contexts

• Canonicalise the form DS by automatically pre-
computing the minimum covering data set

!

LTL - Formula ¬#
Property Specification

Decision Procedure
Context-Sensitive POR SDN4

31st Mul)-Service Networks workshop (MSN 2019)

Klimis - UoS
16

A reduced, more abstract graph, which is a homomorphic
image of the initial one:
Both models fulfil the same observable property (Proofs)

!′

LTL - Formula ¬$
Property Specification

Decision Procedure
Context-Sensitive POR SDN4

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
17

No

LTL - Formula ¬"

#′ ⊨ "

Property Specification

Yes

Counter-example

Model Checker

Decision Procedure
Context-Sensitive POR SDN4

#′

31st Multi-Service Networks workshop (MSN 2019)

Klimis - UoS
18

Implementation
Context-Sensitive POR SDN4

CP and buffers modelled in UPPAAL as concurrent processes

The basic underlying semantic domain of UPPAAL: timed automata.

POR for SDN v15

Figure 5: Flooding in a spanning tree with six routers
and three clients: The dotted arrows denote which client
is allowed to send packet to, imposing the packets sent ini-
tially from the clients. Each initial packet has as source
MAC address the MAC of the client the dotted arrow
starts from, and as destination MAC the one of the client
the arrow points to. In order to keep track of the boxes
the packet passes through (i.e. the packet path history),
the packet type is augmented with a new history bit-field
where each bit represents an either visited or unvisited
by the packet switch. As packets are flooded progres-
sively, their history bit-field is re-written. Hence, each
augmented packet represents a path (coloured arrows)
starting from the switch of the source and ending to the
switch the packet is buffered to, with all the switches be-
fore the last one having their visited-bit set in the packet
history.

16

3 ini%al pkts
18 flooded pkts
7 rules

MAC-Learning switch

w/o POR w/ POR

State size 0.2 KiB2.8 KiB

States 2,978,131

Time

struct type bit-packing DS

13 min

Memory 0.6 GiB7.9 GiB

Did not
terminate within
2 days

Evaluation Highlights
Context-Sensitive POR SDN4

“No packet should loop in my network”
Property:

POR for SDN v15

MAC learning switch in a nutshell: MAC learning is a reactive path planning: the switch, which is not
pro-actively engineered to match flows, have to learn by floods. Upon receiving a packet, the application learns
the location (i.e., the switch and input switch-port) of the sender. If the receiver’s location is already known, the
application installs rules that direct traffic; otherwise, the application instructs the switch to flood - broadcasting
the packet to all possible receivers. If a host moves to a new location, the default rule at the new switch sends the
next packet to the controller, allowing the application to learn the host’s new location and update the paths that
carry traffic to and from the host. The application algorithm is shown in Fig. 4.

deliver packet &
install rule

Is recipient
broadcast?

yes no

Packet-In

Flood packet

Is recipient
in MAC table?no

yes

Is sender
in MAC table?

Store in MAC table

no

yes

Figure 4: The learning switch logic.

We verify the loop freedom property:

⇤8s 2 SW 8p 2 Packet . ¬(p.reached[s] ^ p 2 s.pb)

for the MAC-learning application in different acyclic topologies (Table 3) by an exhaustive search of the state space
of the MAC-learning switch transition system. The experiments were performed on an iMac pro 18-Core, each
tagged at 2.3GHz Intel Xeon W Turbo Boost up to 4.3GHz 42.75MB cache. The results are shown in Fig. 6.

14

Klimis - UoS

Different acyclic topology
settings for verifying
absence of loops using
the Pyswitch MAC
address learning switch
application.

MAC-Learning switch

POR for SDN v15

Table 3: Different acyclic topology settings for verifying absence of loops using the Pyswitch MAC address learning
switch application.

N u m b e r o f s w i t c h e s

N
u

m
b

e
r

o

f

c
l

i
e

n
t

s

3

2

3

97

4

4 5 6 8

5

6

15

Klimis - UoS

MAC-Learning switch

POR for SDN v15

0
9

2

8

107

St
at
es

67

4

Switches
56

Clients
45 4 33 2

1 2 3 4 5
107

States

0
6

2

St
at
es

105

5 4
Switches

4

Clients
4 33 2

0
9 8

10000

Ti
m

e
[s

]

67

Switches
56

Clients
45 4 33 2

2000 4000 6000 8000 10000120001400016000

Time [s]

0
6

50
Ti

m
e

[s
]

5 4
Switches Clients

4 33 2

0
9

5000

8 6

M
em

or
y

[K
iB

]

7

10000

Switches
56

Clients
45 4 33 2

2000 4000 6000 8000 10000 12000 14000

Memory [KiB]

0
6

50

M
em

or
y

[K
iB

]

5 4

Switches Clients
4 33 2

2 3 4 5 6
Clients

3

4

5

6

7

8

9

Sw
itc
he
s

587

4,115

6,281

28,381

51,729

192,616

327,546

443,152

1.29e+06

1.74e+06 2.82545e+06

2.97813e+06

7.97e+06

8.54592e+06

1.47491e+07

2.23222e+07

2.97e+07

5.61127e+07

2 3 4 5 6
Clients

3

4

5

6

7

8

9

Sw
itc

he
s

 0.041s

 0.4s

 0.7s

 3.7s

 8s

 31.8s

 53.7s

1.6m

4.5m

7.9m

13.2m

13.2m

30.7m

 37.1m

1.4h

 2.2h

2.4h

5h

2 3 4 5 6
Clients

3

4

5

6

7

8

9

Sw
itc

he
s

8.7M

10M

 10.1M

 15.7M

20.3M

44M

73.3M

99.3M

321.9M

408.9M

648.8M

709.1M

1.7G

 2.2G

3.6G

6.8G

7G

14.5G

Figure 6: System modelled at the bit-level: The left column graphs show, for different settings switches⇥ clients,
the state-space of the MAC learning switch transition system that needs to be explored (top), a zoomed-in view
of the low state-space values (middle), and the exact values (bottom). Middle and right column: the respective
verification times and memory used.

17

Klimis - UoS

31st Mul)-Service Networks workshop (MSN 2019)

Klimis - UoS

Thanks

