

A step towards building resilient, robust and trustable loT ecosystem

Poonam Yadav and Richard Mortier MSN 2019

This project was supported by a mini-projects award from the Centre for Digital Built Britain and Innovate UK under Grant 90066, and by EPSRC EP/N028260/1 and EP/R03351X/1.

> Networks & Operating Systems SRG, Computer Laboratory

IoT Ecosystem

Challenges

- Heterogeneity
 - Devices, Comm, Apps, Users (and their Data)
- Scalability
- Lack of Standardisation
- Interpretability

Challenges

- Heterogeneity
 - Devices, Comm, Apps, Users (and their Data)
- Scalability
- Lack of Standardisation
- Interpretability

Messy interactions in the end-to-end ecosystem

Messy interactions

Unreliable and untrustworthy systems

Image source: http://www.ltktechnologies.com/how-iot-influence-everyday-life/

Untangling ...

Messy interactions

Image source: http://www.ltktechnologies.com/how-iot-influence-everyday-life/

Understand by profiling a set of interactions Extended profiling from crowdsourced interactions Machine Learning Based Profiling

Understanding interactions

which are critical for IoT robustness, resilience and trustworthiness.

perspective.

- We start with our focus on analysing **Network Service Dependencies** in IoT Eco-system
- In this work we are **NOT** focusing on analysing interactions from security and privacy

Examining IOT Network Service Dependency

- We decided to examine what network behaviours were exhibited by different COTS IOT devices
- A simple experimental setup:
 - Domestic IoT devices
 - Different application domains
 - Manufacturers
 - Popularity
 - Connect them via a router (Netgear N600) we control
 - Capture and analyse their packets

Devices Under Test

- Hubs *vs* sensors
 - Several controlled via phone app
- Radio comm type
 - Non-WiFi via a hub
- Transport *vs* application protocols

Device

- Hive Starter Kit H
- TP-link Smart Plu
- Google Home Mi 3
- Amazon Echo Do 4
- Arlo Security Ca Station [10]
- Foobot Air Quali 6 tor [15]
- Nest Smoke Alar
- D-Link Motion Se 8
- Hive Motion Sens 9
- ParrotPot Smart 10Pot [38]
- MiBand Smart Br 11
- Smart Bluetooth 12

Please note - Our purpose is not to make generalised statements about all IoT devices but to illustrate some of the ways commodity devices behaved and to consider the implications of those behaviours.

	Hub/	Link Type	Protocols	Secu
	Sensor			Insec
Hub [23]	Н	Ethernet	TCP, IGMP, ICMP	S
ug [46]	н	Wi-Fi	UDP, TCP	S ,
ni [19]	н	Wi-Fi	UDP, TCP, IGMP,	S,
			ICMP	
ot [5]	н	Wi-Fi	UDP, TCP, ICMP	S ,
mera Base	н	Ethernet,	UDP, TCP	S ,
		Wi-Fi		
ity Moni-	S	Wi-Fi	TCP	S
m [35]	S	Wi-Fi	UDP, TCP	S,
ensor [12]	S	Wi-Fi	UDP, TCP, IGMP	S,
sor [24]	S	Zigbee	HA 1.2	S
Flower	S	Bluetooth	V4.0 BLE	S
acelet [49]	S	Bluetooth	V4.0	S
Tracker [45]	S	Bluetooth	V4.0	S

Traffic Analysis: In presence of Network Disruption

- Breakdown by protocols
 - Application layer protocols
 - Transport layer protocols
- Traffic pattern time-series analysis
- Protocol and service dependency

Yadav et al, "Network service dependencies in commodity internet-of-things devices", ACM IoTDI, 2019.

State

- #1 Steady state
 #2 Internet disconnected
 #3 Internet resumed
 #4 Router power-off
- #5 Router power-on
- #6 Internet resumed
- #7 Device restarted

Internet	Local router	Devices
On	On	On
Off	On	On
On	On	On
Off	Off	On
Off	On	On
On	On	On
On	On	Off→On

(#1 -> #2)

(#1 -> #2)

State

- #1 Steady state
- #2 Internet disconnected
- #3 Internet resumed
- #4 Router power-off
- #5 Router power-on
- #6 Internet resumed
- #7 Device restarted

Internet	Local router	Devices
On	On	On
Off	On	On
On	On	On
Off	Off	On
Off	On	On
On	On	On
On	On	Off→On

14

(#4 -> #5)

(#5 -> #6)

Traffic Breakdown by Application Layer Protocols

(#4 -> #5)

16

State

- #1 Steady state
- #2 Internet disconnected
- #3 Internet resumed
- #4 Router power-off
- #5 Router power-on
- #6 Internet resumed
- #7 Device restarted

Internet	Local router	Devices
On	On	On
Off	On	On
On	On	On
Off	Off	On
Off	On	On
On	On	On
On	On	Off→On

(#3)

(#1)

(#6)

State

- #1 Steady state
- #2 Internet disconnected
- #3 Internet resumed
- #4 Router power-off
- #5 Router power-on
- #6 Internet resumed
- #7 Device restarted

Internet	Local router	Devices
On	On	On
Off	On	On
On	On	On
Off	Off	On
Off	On	On
On	On	On
On	On	Off→On

(#6) 1 hour data

(#7)

5 Mins data

(#6) 1 hour data

(#7)

5 Mins data

Going forward...

- How can we decouple IoT minimum functionality from Internet services and not only build but also test robustness and resilience?
- Transparency and accountability of the internet service dependency
 - IETF MUD specifications

 - Vulnerability disclosure framework • Device lifetime management as a service

poonam.yadav@cl.cam.ac.uk richard.mortier@cl.cam.ac.uk

@pooyadav @mort

