

Internet Traffic Analysis:

On the Distribution of Traffic Volumes in the Internet and its Implications

Mohammed Alasmar Department of Informatics University of Sussex George Parisis Department of Informatics University of Sussex Richard Clegg School of Computer Science Queen Mary University of London Nickolay Zakhleniuk School of Computer Science University of Essex

UNIVERSITY OF SUSSEX

https://ieeexplore.ieee.org/document/8737483

Coseners, 2019

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Motivations

Reliable traffic modelling is important for network planning, deployment and management; e.g.

(1) network dimensioning,

- (2) traffic billing.
- Historically, network traffic has been widely assumed to follow a Gaussian distribution.
- Deciding whether Internet flows could be heavy-tailed became important as this implies significant departures from Gaussianity.

2. Main Goals

- 3. Methodology
- 4. Datasets
- 5. Power-law test
- Overview
- Likelihood ratio
- Anomalous traces
- Sampling times
- Corr. coeff. test
- 6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Traffic volumes at different T

 X_i : the amount of traffic seen in the time period [iT, (i + 1)T)

Internet trace.pacp								
File	Ed	it View G	o Capture Analyze	e Statistics Telepho	ny Wirele	ss Tools	Help	
◢ ■ ∅ ◎ - ि ☎ 🕱 🖆 🔍 ⇔ ⇔ ≊ 🗿 🕹 📃 📃 �. ♀. ♥. 亜								
Apply a display filter <ctrl-></ctrl->								
No.		Time	Source	Destination	Protocol	Length	Info	
	343	65.142415	192.168.0.21	174.129.249.228	TCP	66	40555 → 80	
	344	65.142715	192.168.0.21	174.129.249.228	HTTP	253	GET /clier	
	345	65.230738	174.129.249.228	192.168.0.21	TCP	66	80 → 40555	
	346	65.240742	174.129.249.228	192.168.0.21	HTTP	828	HTTP/1.1 3	
	347	65.241592	192.168.0.21	174.129.249.228	TCP	66	40555 → 80	
+	348	65.242532	192.168.0.21	192.168.0.1	DNS	77	Standard d	
-	349	65.276870	192.168.0.1	192.168.0.21	DNS	489	Standard d	
	350	65.277992	192.168.0.21	63.80.242.48	TCP	74	37063 → 80	
	351	65.297757	63.80.242.48	192.168.0.21	тср	74	80 → 37063	
	352	65.298396	192.168.0.21	63.80.242.48	TCP	66	37063 → 80	
	353	65.298687	192.168.0.21	63.80.242.48	HTTP	153	GET /us/nr	
	354	65.318730	63.80.242.48	192.168.0.21	TCP	66	80 → 37063	
	355	65.321733	63.80.242.48	192.168.0.21	тср	1514	[TCP segme	
<								

Aggregation at different sampling times (T)

2. Main Goals

Goal

3. Methodology

- 4. Datasets
- 5. Power-law test
- Overview
- Likelihood ratio
- Anomalous traces
- Sampling times
- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Investigating the distribution of the amount of traffic per unit time using a robust statistical approach.

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Datasets

■ We study a large number of traffic traces (230) from many different networks: 2009 → 2018

Dataset	#Traces
Twente ¹	40
MAWI ²	107
Auckland ³	25
Waikato ⁴	30
Caida ⁵	27

[1] <u>https://www.simpleweb.org/wiki/index.php/Traces</u>, 2009.

[2] <u>http://mawi.wide.ad.jp/mawi/</u>, 2016-2018.

[3] https://wand.net.nz/wits/auck/9/, 2009.

[4] <u>https://wand.net.nz/wits/waikato/8/</u>, 2010-2011.

[5] <u>http://www.caida.org/data/overview/</u>, 2016.

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Power-law test

- Our analysis is based on the framework proposed in:
 - Power-law distributions in empirical data <u>A Clauset, CR Shalizi, MEJ Newman</u> - SIAM review, 2009 - SIAM
 - The framework combines <u>maximum-likelihood</u> fitting methods with <u>goodness-of-fit</u> tests based on the **K**olmogorov–Smirnov statistic and likelihood ratios.

1. Motivations					
2. Main Goals					
3. Methodology					
4. Datasets					
5. Power-law test					
- Overview					
- Likelihood ratio					
- Anomalous traces					
- Sampling times					
- Corr. coeff. test					
6. Use case 1					
Link Dimensioning					
7. Use case 2					
Traffic billing					

Power-law test

1. Motivations	Likelihood Ratio: R
3. Methodology	R, p = fit. distributionCompare(powerlaw, alternative)
 Datasets Power-law test 	 Weibull Lognormal
 Overview Likelihood ratio Anomalous traces Sampling times 	Likelihood ratio: $\mathbf{R} = \frac{L_1}{L_2} = \frac{\prod_{i=1}^{n} p_1(x)}{\prod_{i=1}^{n} p_2(x)} \longrightarrow \text{ power-law likelihood function}$ alternative likelihood function
- Corr. coeff. test 6. Use case 1 Link Dimensioning 7. Use case 2	 Log-Likelihood ratio: R If R > 0, then the power-law is favoured. If R < 0, then the alternative is favoured. If p < 0.1, then the value of R can be trusted.

Traffic billing

The log-normal distribution is the best fit for the vast majority of traces.

The log-normal distribution is not the best fit for ...

- 1 out of 27 CAIDA traces
- o 9 out of 107 MAWI traces
- o 2 out of 30 Waikato traces
- 5 out of 40 Twente traces
- \circ 1 out of 25 Auckland traces

Anomalous traces

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Anomalous traces

- Anomalous traces are a poor fit for all distributions tried.
- This is often due to traffic <u>outages</u> or links that hit <u>maximum capacity</u>.

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

At different sampling times: T

Normalised Log-Likelihood Ratio (LLR) test results for all studied traces and log-normal distribution at different timescales

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

The correlation coefficient test

Strong goodness-of-fit (GOF) is assumed to exist when the value of γ is greater than 0.95.

Log-normal ₂0.95 -≁ T=5sec - T=1sec -* T=100msec () 9 CAIDA traces --- T=5msec 20 5 15 25 10 Rank of Traces

Rank of Traces

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Use case 1: Bandwidth provisioning

Bandwidth provisioning approach provides the link by <u>the essential</u> <u>bandwidth</u> that guarantees the required performance.

Overprovisioning. In the conventional methods the bandwidth is allocated by <u>up-grading the link bandwidth to 30%</u> of the average traffic value.

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

Use case 1: Bandwidth provisioning

The following inequality (the 'link transparency formula') has been used for bandwidth provisioning:

$$P\left(\frac{A(T)}{T} \ge C\right) \le \varepsilon$$

i.e., the probability that the <u>captured traffic</u> A(T) over a specific <u>aggregation timescale</u> T is larger than the <u>link</u> <u>capacity</u> C has to be smaller than the value of a <u>performance criterion</u> ε .

 \checkmark ϵ has to be chosen carefully by the network

provider in order to meet the specified SLA.

Use case 1: Bandwidth provisioning *Example*: $\varepsilon = 0.01$

2. Main Goals

3. Methodology

4. Datasets

5. Power-law test

- Overview

- Likelihood ratio

- Anomalous traces

- Sampling times

- Corr. coeff. test

6. Use case 1

Link Dimensioning

7. Use case 2

Traffic billing

More details

Thanks! Questions?

SUMMARY

- > The distribution of traffic on Internet links is an important problem that has received relatively little attention.
- We use a well-known, state-of-the-art statistical framework to investigate the problem using a large corpus of traces.
- ➢ We investigated the distribution of the amount of traffic observed on a link in a given (small) aggregation period which we varied from 5 msec to 5 sec.
- > The vast majority of traces fitted the lognormal assumption best and this remained true all timescales tried.
- We investigate the impact of the distribution on two sample traffic engineering problems.
 - 1. Firstly, we looked at predicting the proportion of time a link will exceed a given capacity.
 - 2. Secondly, we looked at predicting the 95th percentile transit bill that ISP might be given.
- For both of these problems the log-normal distribution gave a more accurate result than heavy-tailed distribution or a Gaussian distribution.

Backup

[Ref] A. Clauset, C. S. Rohilla, and M. Newman, "Power-law distributions in empirical data," arXiv:0706.1062v2, 2009.

Log-Likelihood ratio (R)

