
Internet Traffic Analysis:

Coseners, 2019

Mohammed Alasmar

https://ieeexplore.ieee.org/document/8737483

‘19

https://ieeexplore.ieee.org/document/8737483


2

§ Reliable traffic modelling is important for network
planning, deployment and management; e.g.

(1) network dimensioning,

(2) traffic billing.

§ Historically, network traffic has been widely assumed to
follow a Gaussian distribution.

§ Deciding whether Internet flows could be heavy-tailed
became important as this implies significant departures
from Gaussianity.

Motivations 



Traffic volumes at different T  
§ 𝑋" : the amount of traffic seen in the time period [𝑖𝑇, (𝑖 + 1)𝑇)

§ Aggregation at different sampling times (T)

Internet trace.pacp
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Traffic volumes at different T  
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Goal 

5

0 10 20 30 40
Data rate (Mbps)

0

0.05

0.1

PD
F

T = 10 ms
T = 1 sec
T = 5 sec 

Goal 

§ Investigating the distribution of the amount of traffic
per unit time using a robust statistical approach.
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§ Investigating the distribution of the
amount of traffic per unit time using
a robust statistical approach.

Goal 
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Goal

T = 10 ms
T = 1 sec
T = 5 sec 



8

Dataset #Traces 
Twente1 40
MAWI2 107
Auckland3 25
Waikato4 30
Caida5 27

[1]  https://www.simpleweb.org/wiki/index.php/Traces , 2009.
[2] http://mawi.wide.ad.jp/mawi/ , 2016-2018.
[3] https://wand.net.nz/wits/auck/9/ , 2009. 
[4] https://wand.net.nz/wits/waikato/8/ , 2010-2011.
[5]  http://www.caida.org/data/overview/ , 2016.

§ We study a large number of traffic traces (230) from many 
different networks: 2009 à 2018

Datasets

https://www.simpleweb.org/wiki/index.php/Traces
http://mawi.wide.ad.jp/mawi/
https://wand.net.nz/wits/auck/9/
https://wand.net.nz/wits/waikato/8/
http://www.caida.org/data/overview/
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§ Our analysis is based on the framework proposed in: 

§ The framework combines maximum-likelihood fitting 
methods with goodness-of-fit tests based on the 
Kolmogorov–Smirnov statistic and likelihood ratios. 

Power-law test
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Power-law test

𝑝 𝑥 =
𝛼 − 1
xmin
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Power-law test
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𝑹, 𝑝 = 𝑓𝑖𝑡. 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏𝑪𝒐𝒎𝒑𝒂𝒓𝒆(𝑝𝑜𝑤𝑒𝑟𝑙𝑎𝑤, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)

Likelihood Ratio: 𝑹

• If 𝑹 > 0, then the power-law is favoured.
• If 𝑹 < 0, then the alternative is favoured.
• If 𝑝 < 0.1 , then the value of 𝑹 can be trusted.

• Weibull
• Lognormal
• ExponentialLikelihood ratio:

𝑹 = PQ
PR
= ∏TUQ

V WQ X
∏TUQ
V WR(X)

power-law likelihood function
alternative likelihood function

§ 𝑳og−Likelihood ratio: 𝑹
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Normalised Log-Likelihood Ratio (LLR)  
T=100 msec
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The log-
normal is the 
best fit for the 
vast majority 

of traces.

(𝑹
)
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Twente traces
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The log-normal distribution is not 
the best fit for …

Anomalous traces

The log-normal 
distribution is the 

best fit for the vast 
majority of traces.

o 1 out of 25 Auckland traces

o 9 out of 107 MAWI traces
o 1  out of 27 CAIDA traces

o 2  out of 30 Waikato traces
o 5 out of 40 Twente traces
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Anomalous traces
§ Anomalous traces are a poor fit for all distributions 

tried.

§ This is often due to traffic outages or links that hit 
maximum capacity.
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Normalised Log-Likelihood Ratio (LLR) test results for all studied 
traces and log-normal distribution at different timescales 
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The correlation coefficient test
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§ Strong goodness-of-fit (GOF) is assumed to exist when the 

value of 𝛾 is greater than 0.95. 
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§ Bandwidth provisioning approach 
provides the link by the essential 
bandwidth that guarantees the 
required performance. 

§ Overprovisioning. In the conventional 
methods the bandwidth is allocated by 
up-grading the link bandwidth to 30% 
of the average traffic value.

Use case 1: Bandwidth provisioning
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𝑃
𝐴 𝑇
𝑇

≥ 𝐶 ≤ 𝜀

§ The following inequality (the ‘link transparency
formula’) has been used for bandwidth provisioning:

i.e., the probability that the captured traffic A T over a
specific aggregation timescale T is larger than the link
capacity C has to be smaller than the value of a
performance criterion ε.

ü 𝛆 has to be chosen carefully by the network

provider in order to meet the specified SLA.

Use case 1: Bandwidth provisioning



MAWI traces 

Expected link capacity 
Gaussian
Weibull

Log-normal

𝑬𝒙𝒂𝒎𝒑𝒍𝒆: 𝛆 = 𝟎. 𝟎𝟏Use case 1: Bandwidth provisioning

Performance criterion ε

𝑷
𝑨 𝑻
𝑻 ≥ 𝑪 ≤ 𝜺
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Use case 2: 95th percentile pricing
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Burstable Billing

§ Customers are not billed for brief spikes in
network traffic.

[5 minutes]
Percentile 
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• Log-normal model provides much more accurate predictions of the 95th percentile.

95th percentile pricing: Results

The red reference 
line to show where 
perfect predictions 
would be located.
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Thanks! Questions?

More details ….



25

Ø The distribution of traffic on Internet links is an important problem that has received relatively little
attention.

Ø We use a well-known, state-of-the-art statistical framework to investigate the problem using a large corpus
of traces.

Ø We investigated the distribution of the amount of traffic observed on a link in a given (small) aggregation
period which we varied from 5 msec to 5 sec.

Ø The vast majority of traces fitted the lognormal assumption best and this remained true all timescales tried.

Ø We investigate the impact of the distribution on two sample traffic engineering problems.

1. Firstly, we looked at predicting the proportion of time a link will exceed a given capacity.

2. Secondly, we looked at predicting the 95th percentile transit bill that ISP might be given.

Ø For both of these problems the log-normal distribution gave a more accurate result than heavy-tailed
distribution or a Gaussian distribution.

Summary 
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Backup ……



Estimating: (𝛼 , xmin ,  ntail )
using MLE & KS test

Uncertainty in the fitted 
parameters (Bootstrapping)

Goodness-of-fit
p-value

ℛℛ < 0

Alternative  
is favoured

p > 0.1 p < 0.1

Ho: Power-law is favoured

fail to 
reject Ho

reject Ho

ℛ > 0

None is 
favoured

p-value 
for  ℛ

Power-law  
is favoured

None is 
favoured

p > 0.1 p < 0.1 p > 0.1 p < 0.1

ℛℛ > 0 ℛ < 0

None is 
favoured

p-value 
for  ℛ

Alternative  
is favoured

None is 
favoured

p > 0.1 p < 0.1

1

2

3

4

5 p-value 
for  ℛ

Power-law Test 
Power-law distribution: 

𝑝 𝑥 = 10q
xmin

X
xmin

01

Power-law test

Log-Likelihood	ratio	(ℛ)
[Ref]  A. Clauset, C. S. Rohilla, and M. Newman, “Power-law 
distributions in empirical data,” arXiv:0706.1062v2, 2009.
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