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IETF protocol standards
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• Developed by large groups of 
people, often remotely

• Process is iterative and incremental

• Output is a document that is mostly 
English prose

• No good way to automatically verify 
or validate a standards document

• Inconsistencies & ambiguities in 
specs → buggy implementations
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.. but the process works: 
we have the Internet!



Improving protocol standards
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• Goal: shift towards a test-driven development style 
approach, where running a suite of validation and 
verification tools over a standards document becomes 
commonplace

• Don’t want to replace the process, but to augment it



Describing protocol parsing
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• First aim: build a tool that allows for a parser for the specified 
protocol to be generated automatically

• Need a machine-readable description of the protocol’s data 
units, and all the metadata needed to parse them

• Good place to start: knowing what the protocol looks like 
forms the basis of more complex tools



Design principles
• Most readers are human

• Authorship tools are diverse

• Canonical specifications

• Expressiveness

• Minimise required change
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ASCII packet diagrams
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ASCII packet diagrams

ASCII diagrams already 
specify much of the 

protocol’s syntax
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ASCII packet diagrams

 16

Many variations with 
subtle differences → difficult to parse



Augmented ASCII diagrams
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• Much can be achieved just by being consistent

• Need other elements: constraints on field values, optional 
fields, links between PDUs, …

• Adheres to the design principles given earlier



Parsing protocol standards
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RFC DOM

• Parse input into an RFC document object 
model

• RFC DOM is already well specified

• Allows for different input formats
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RFC DOM Intermediate 
representation

• Extract a protocol definition from the RFC DOM, 
and capture it in an intermediate representation

• Captures the syntax of the protocol and how to 
parse it

• Allows for different input languages, whose 
expressivity might vary
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RFC DOM Intermediate 
representation

• Intermediate representation captures all of 
metadata required to parse the protocol

• The layout of each PDU

• Parsing context for out-of-band data

• Helper methods for encrypted fields 
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RFC DOM Intermediate 
representation

Parsers

• Generate parser code from the 
intermediate representation

• Split means that a parser generator only 
needs to be written once per output 
language



Summary
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• IETF standardisation process can create ambiguous standards: 
want to introduce tooling without harming the parts of the process 
that work well

• ASCII diagrams already capture much of a protocol’s syntax

• Augmenting ASCII diagrams and using them consistently allows 
tooling to extract protocol syntax

• Capturing protocol parsing in a common intermediary format allows 
for flexibility

• Automated parser generation from the intermediary format enables 
test-driven development → better standards


