
Parsing Protocol Standards

Stephen McQuistin
Colin Perkins

Multi-Service Networks workshop
5th July 2019



IETF protocol standards

 2

• Developed by large groups of 
people, often remotely

• Process is iterative and incremental

• Output is a document that is mostly 
English prose

• No good way to automatically verify 
or validate a standards document

• Inconsistencies & ambiguities in 
specs → buggy implementations



IETF protocol standards

 3

• Developed by large groups of 
people, often remotely

• Process is iterative and incremental

• Output is a document that is mostly 
English prose

• No good way to automatically verify 
or validate a standards document

• Inconsistencies & ambiguities in 
spec → buggy implementations

.. but the process works: 
we have the Internet!



Improving protocol standards

 4

• Goal: shift towards a test-driven development style 
approach, where running a suite of validation and 
verification tools over a standards document becomes 
commonplace

• Don’t want to replace the process, but to augment it



Describing protocol parsing

 5

• First aim: build a tool that allows for a parser for the specified 
protocol to be generated automatically

• Need a machine-readable description of the protocol’s data 
units, and all the metadata needed to parse them

• Good place to start: knowing what the protocol looks like 
forms the basis of more complex tools



Design principles
• Most readers are human

• Authorship tools are diverse

• Canonical specifications

• Expressiveness

• Minimise required change

 6



 7

ASCII packet diagrams



 8

ASCII packet diagrams

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII packet diagrams

 9

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII packet diagrams

 10

ASCII packet diagrams

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII diagrams already 
specify much of the 

protocol’s syntax

ASCII packet diagrams

 11



ASCII packet diagrams

 12



ASCII packet diagrams

 13



ASCII packet diagrams

 14



ASCII packet diagrams

 15



ASCII packet diagrams

 16

Many variations with 
subtle differences → difficult to parse



Augmented ASCII diagrams

 17

• Much can be achieved just by being consistent

• Need other elements: constraints on field values, optional 
fields, links between PDUs, …

• Adheres to the design principles given earlier



Parsing protocol standards

 18

RFC DOM

• Parse input into an RFC document object 
model

• RFC DOM is already well specified

• Allows for different input formats



Parsing protocol standards

 19

RFC DOM Intermediate 
representation

• Extract a protocol definition from the RFC DOM, 
and capture it in an intermediate representation

• Captures the syntax of the protocol and how to 
parse it

• Allows for different input languages, whose 
expressivity might vary



Parsing protocol standards

 20

RFC DOM Intermediate 
representation

• Intermediate representation captures all of 
metadata required to parse the protocol

• The layout of each PDU

• Parsing context for out-of-band data

• Helper methods for encrypted fields 



Parsing protocol standards

 21

RFC DOM Intermediate 
representation

Parsers

• Generate parser code from the 
intermediate representation

• Split means that a parser generator only 
needs to be written once per output 
language



Summary

 22

• IETF standardisation process can create ambiguous standards: 
want to introduce tooling without harming the parts of the process 
that work well

• ASCII diagrams already capture much of a protocol’s syntax

• Augmenting ASCII diagrams and using them consistently allows 
tooling to extract protocol syntax

• Capturing protocol parsing in a common intermediary format allows 
for flexibility

• Automated parser generation from the intermediary format enables 
test-driven development → better standards


