

School of Computing Science

FLOQ: A new queue management solution

Mihail Yanev

Assumptions

- The Internet uses **packets** to transfer information
- **Routers** help navigate the packets to their correct destination(s)
- **Buffers** exist within routers that hold the packets
- Algorithms that manage those buffers exist

- Basic **TCP dynamics**
 - Packet loss recovery (retransmission timeout(RTO); fast-retransmit)

The Problem

• Web requests *sometimes* take long to complete... Even close to the caches

• In a mobile environment that is not uncommon.

• What causes this issue? How can we address it? What are the trade-offs?

Verifying Causation

- We built a simulation environment featuring:
 - TCP web
 - Long TCP (e.g., file downloads)
 - On-Off TCP (DASH streaming)
 - QUIC web (It is 2020 afterall...)
 - C.B.R. UDP

Verifying Causation

- We built a simulation environment featuring:
 - TCP web
 - Long TCP (e.g., file downloads)
 - On-Off TCP (DASH streaming)
 - QUIC web (It is 2020 afterall...)
 - C.B.R. UDP

• We created Light, Medium, and High network load scenarios by varying the number of **long TCP** connections

The Cause

• Initial packet loss <-> Request completion time relation was found!

The Cause

• Initial packet loss <-> Request completion time relation was found!

• How can we alter packet loss behaviour?

• Different AQMs have different impact w.r.t. P.L.T.

• Different AQMs have different impact w.r.t. P.L.T.

• None of the AQMs solved the initial packet loss problem.

- By its size?
 - Tail/front first in first out (FIFO) drop

- By its size?
 - Tail/front first in first out (FIFO) drop

- By measuring packet delay?
 - Controlled Delay (CoDel)

- By its size?
 - Tail/front first in first out (FIFO) drop

- By measuring packet delay?
 - Controlled Delay (CoDel)
 - Proportional Integral Enhanced (PIE)

- By its size?
 - Tail/front first in first out (FIFO) drop

- By measuring packet delay?
 - Controlled Delay (CoDel)
 - Proportional Integral Enhanced (PIE)

- By using stochastic functions?
 - Random Early Detection (RED)

• What if we used that knowledge to create a new AQM?

• What if we used that knowledge to create a new AQM?

• What if that new AQM was designed to target initial packet loss?

• What if we used that knowledge to create a new AQM?

• What if that new AQM was designed to target initial packet loss?

• What would be the impact for all other traffic?

FLow Optimised Queuing (FLOQ)

• Use traffic metadata

- Divide traffic into responsive (congestion-controlled) and unresponsive (not congestion-controlled)
- Keep state if connection is in setup phase

FLow Optimised Queuing (FLOQ)

Use traffic metadata

- Divide traffic into responsive (congestion-controlled) and unresponsive (not congestion-controlled)
- Keep state if connection is in setup phase

• Use this metadata to calculate a drop chance when capacity exceeds a threshold (like RED)

What Is The Impact? (A portion of stats)

Page Load Time (PLT)

21

Page Load Time (PLT)

Page Load Time (PLT)

Light

Medium

Heavy

TCP Throughput

Light

Μ	edium	

High

	FLOQ	CoDel	PIE	FIFO
Avg. Throughput	1.78 (-29.9%)	2.54	2.5	2.51
Jain's Fairness	0.999	0.993	0.995	0.996
	FLOQ	CoDel	PIE	FIFO
Avg. Throughput	1.7 (+27.06%)	1.25	1.24	1.25
Jain's Fairness	1.000	0.989	0.989	0.984
	FLOQ	CoDel	PIE	FIFO
Avg. Throughput	1.04 (+29.81%)	0.73	0.73	0.73
Jain's Fairness	0.998	0.987	0.983	0.988

UDP Packet Loss

Light

High

	FLOQ	CoDel	PIE	FIFO
Avg. Pkt Loss	40.3 (+21.13%)	33.29	32.23	33.30

		FLOQ	CoDel	PIE	FIFO
Medium	Avg. Pkt Loss	12.16 (-65.8%)	38.36	37.71	34.54

	FLOQ	CoDel	PIE	FIFO
Avg. Pkt Loss	17.64 (-52.51%)	37.14	41.95	39.94

Summary

• Using FLOQ observed PLTs is faster.

• Less connections suffer from initial packet loss.

• When affected by initial loss, connections respond faster.

Summary

• Using FLOQ observed PLTs is faster.

• Less connections suffer from initial packet loss.

• When affected by initial loss, connections respond faster.

• TCP throughput and non congestion controlled traffic packet loss is also improved in some network scenarios.

Future Work

• Deeper analysis of collected data. What about DASH?

• Improved simulation (sandbox) environment. More accurate approximations of VoIP, real-time video.

• Breaking the sandbox - study of FLOQ in the wild.

• Interaction with different congestion control algorithms.