

A Framework for Measuring, Normalising and Aggregating Security Costs in Cyber-Physical Systems

9 July 2020 Igor Ivkić i.ivkic@lancaster.ac.uk

Research & Teaching

PhD (3rd year)

Modelling Security Costs in Self-Adaptable Cyber-Physical Systems

- Supervisors:
 - Antonios Gouglidis
 - Andreas Mauthe
 - Markus Tauber

Agenda

• Cyber-Physical Systems

- Onion Layer Model
- Experimental Setup
- Results
- Conclusions

A brief introduction to Security Costs

Our genes are selfish!

Why are we the way we are?

Broad applicability of the "Selfish Gene"-theory among flora and fauna.

Why do certain animals have a certain number of children (offspring)?

Why does a specific species of birds only lay a total of 5 eggs max? Why not more?

A brief introduction to Security Costs

- Robert Trivers
 - Parental Investment and Sexual Selection (1972)
- How much does it cost to be a parent?
- How much kilocalories (kcal) do parents keep for themselves?
- Result: bird-parents lose weight during "feeding time"!

Definition of Cyber-Physical Systems

CPS & IoT & Frameworks

Modelling Security Costs in CPS

Cyber-Physical Systems

Metric Types

Modelling Security Costs in CPS

Fig. 4: Onion Layer Model (Ivkic et al., 2019)

$$SecurityCosts_{CPS_1} = \sum_{i=1}^{\widehat{I}_{CPS_1}} \sum_{c=1}^{\widehat{C}_i} \sum_{s=1}^{\widehat{S}_c} \sum_{m=1}^{\widehat{M}_s} \dot{x}_{icsm} * w_{MT_j}$$

Onion Layer Model

• Experimental Setup

Results

Conclusions

Protocol	Temperature	Runs	Use Case	WL
HTTPS	Measurement <25°C Measurement >25°C	25 25	Use Case 1	WL _{1.1}
HTTP	Measurement <25°C Measurement >25°C	25 25	Use Case 1	WL _{1.2}
HTTPS	Measurement <25°C Measurement >25°C	25 25	Use Case 2	WL _{2.1}
HTTP	Measurement <25°C Measurement >25°C	25 25	Use Case 2	$WL_{2.2}$

Table 2: Measurement Metrics used for Measuring Security Costs for each Workload

Metric Type	Metric	Unit
MT_0	Algorithmic Time Complexity (Big-O)	-
MT_1	Duration of executing a specific task	Milliseconds (ms)
MT_2	CPU-usage	Percent (%)
MT_3	Power consumption	Milliwattseconds (mWs)

"Testbed"

Experimental Setup

PiLogger One & Pinpoint APM

Pilogger One Pinpoint APM Image: Constant of CPS Image: Constantof CPS Image: Consta

Fig. 5: Raspberry Pi add-on board for measuring power consumption (PiLogger, 2020)

Fig. 6: Pinpoint Application Performance Management Architecture (Naver, 2020)

Profile Data Storage

Security Cost Modelling Framework (SCMF)

Fig. 7: A Holistic Approach for Normalising, Weighing and Aggregating Security Costs

Di	isc	ιιςςί	ion
	130	U 33	

Table 4: Security Costs per Workload

Total Costs										Security Costs									
WL	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ	W	L	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ	
<i>WL</i> _{1.1}	< 25°C	0.00083	0.36000	0.01800	0.04377	0.05060	0.00221	53.92297	W/T		< 25°C	0.00267	0.13728	0.01500	0.04714	0.05065	0.00414	17 615/1	
	> 25°C	0.00100	0.28755	0.02200	0.05894	0.07366	0.00321		W L	·1.1	> 25°C	0.00267	0.27930	0.02231	0.07030	0.08565	0.00699	17.01341	
$WL_{1.2}$	< 25°C	0.00070	0.34000	0.02100	0.04876	0.05830	0.00254	53.51435	53.51435	IAZ I		< 25°C	0.00244	0.16359	0.01400	0.04861	0.05337	0.00436	16 08108
	> 25°C	0.00089	0.39874	0.02000	0.05317	0.06804	0.00297				41.2	> 25°C	0.00178	0.23166	0.01500	0.05859	0.07342	0.00599	10.00100
WI.	< 25°C	0	0.08281	0	0.00472	0.01431	0.00062	36.15943	WI		< 25°C	0	0	0	0	0	0	10 97640	
$WL_{2.1}$	> 25°C	0.00100	0.44075	0.02642	0.06415	0.08218	0.00359		0.13945 $WL_{2.1}$	> 25°C	0.00267	0.29200	0.02486	0.07318	0.08504	0.00694	10.7/040		
WL _{2.2}	< 25°C	0	0.10100	0	0.00480	0.01471	0.00064	31.57160	TAT I		< 25°C	0	0	0	0	0	0	10 023/3	
	> 25°C	0.00100	0.37200	0.02066	0.05534	0.07307	0.00319		51.57100	WL _{2.2}	> 25°C	0.00200	0.31474	0.02239	0.06682	0.08074	0.00659	10.02343	

Use Case 1: SecurityCosts_{CPS1} =
$$(53.92297 - 53.51435) + 17.61541 = 18.02403 + f_{MT_0}(n)$$

Use Case 2: SecurityCosts_{CPS1} = $(36.15943 - 31.57160) + 10.97640 = 15.56423 + f_{MT_0}(n)$ Algorithmic Complexity Constants

• Cyber-Physical Systems

Discussion

	≈ 30% of all tasks performed are security-related																						
						00/0					security rele												
Table 3: Total Costs per Workload												Table	4: Securi	ty Costs p	er Worklo	ad							
	Total Costs												Security	Costs									
WL	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ		WL	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ					
1477	< 25°C	0.00083	0.36000	0.01800	0.04377	0.05060	0.00221	53 02207		WI	< 25°C	0.00267	0.13728	0.01500	0.04714	0.05065	0.00414	17 61541					
W L _{1.1}	> 25°C	0.00100	0.28755	0.02200	0.05894	0.07366	0.00321	55.92297	33.94497	W L _{1.1}	> 25°C	0.00267	0.27930	0.02231	0.07030	0.08565	0.00699	17.01541					
TAZ T	< 25°C	0.00070	0.34000	0.02100	0.04876	0.05830	0.00254	0.00254	0.00254	0.00254	52 51/25	E2 E142E		2 51/25	WI	< 25°C	0.00244	0.16359	0.01400	0.04861	0.05337	0.00436	16 08108
W L _{1.2}	> 25°C	0.00089	0.39874	0.02000	0.05317	0.06804	0.00297	55.51435		55.51435		7 53.51435		W L _{1.2}	> 25°C	0.00178	0.23166	0.01500	0.05859	0.07342	0.00599	10.00100	
TATT	< 25°C	0	0.08281	0	0.00472	0.01431	0.00062	26 15042		TAZT	< 25°C	0	0	0	0	0	0	10 07640					
W L _{2.1}	> 25°C	0.00100	0.44075	0.02642	0.06415	0.08218	0.00359	30.13943	£3	$WL_{2.1}$	> 25°C	0.00267	0.29200	0.02486	0.07318	0.08504	0.00694	10.97040					
WL _{2.2}	< 25°C	0	0.10100	0	0.00480	0.01471	0.00064	21 57140	31.57160	TAT T	< 25°C	0	0	0	0	0	0	10 022/2					
	> 25°C	0.00100	0.37200	0.02066	0.05534	0.07307	0.00319	31.57160		W L _{2.2}	> 25°C	0.00200	0.31474	0.02239	0.06682	0.08074	0.00659	10.02343					

Use Case 1: SecurityCosts_{CPS1} =
$$(53.92297 - 53.51435) + 17.61541 = 18.02403 + f_{MT_0}(n)$$

Use Case 2: SecurityCosts_{CPS1} = $(36.15943 - 31.57160) + 10.97640 = 15.56423 + f_{MT_0}(n)$ Algorithmic Complexity Constants

19

• Cyber-Physical Systems

Discussion

	The cost of "S" in HTTPS																
Table 3: Total Costs per Workload											Table	e 4: Securi	ty Costs p	er Worklo	ad		
					Security	Costs											
WL	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ	WL	Measurement	Min	Max	Median	Mean	Std.Dev.	Std.Err.	Σ
	< 25°C	0.00083	0.36000	0.01800	0.04377	0.05060	0.00221	53.92297	1477	< 25°C	0.00267	0.13728	0.01500	0.04714	0.05065	0.00414	17 (15 41
$WL_{1.1}$	> 25°C	0.00100	0.28755	0.02200	0.05894	0.07366	0.00321		W L _{1.1}	> 25°C	0.00267	0.27930	0.02231	0.07030	0.08565	0.00699	17.61541
TAZ T	< 25°C	0.00070	0.34000	0.02100	0.04876	0.05830	0.00254	52 51/25	WI	< 25°C	0.00244	0.16359	0.01400	0.04861	0.05337	0.00436	16 08108
W L _{1.2}	> 25°C	0.00089	0.39874	0.02000	0.05317	0.06804	0.00297	55.51455	W L _{1.2}	> 25°C	0.00178	0.23166	0.01500	0.05859	0.07342	0.00599	10.00100
TATT	< 25°C	0	0.08281	0	0.00472	0.01431	0.00062	26 150/2	TATI	< 25°C	0	0	0	0	0	0	10 07640
W L _{2.1}	> 25°C	0.00100	0.44075	0.02642	0.06415	0.08218	0.00359	30.13943	W L _{2.1}	> 25°C	0.00267	0.29200	0.02486	0.07318	0.08504	0.00694	10.97040
TATT	< 25°C	0	0.10100	0	0.00480	0.01471	0.00064	21 57160	TATT	< 25°C	0	0	0	0	0	0	10 022 42
$WL_{2.2}$	> 25°C	0.00100	0.37200	0.02066	0.05534	0.07307	0.00319	$31.5/160$ $WL_{2.2}$	> 25°C	0.00200	0.31474	0.02239	0.06682	0.08074	0.00659	10.02545	

$$Use \ Case \ 1: \ SecurityCosts_{CPS_1} = (53.92297 - 53.51435) + 17.61541 = 18.02403 + f_{MT_0}(n) \\ Use \ Case \ 2: \ SecurityCosts_{CPS_1} = (36.15943 - 31.57160) + 10.97640 = 15.56423 + f_{MT_0}(n) \\ Harris = 15.56423 + f_{MT_0}(n) \\ Harr$$

Algorithmic Complexity Constants

Cyber-Physical Systems

Discussion

In general: Use Case 2 performs better than Use Case 1 Table 4: Security Costs per Workload Table 3: Total Costs per Workload **Total Costs** Security Costs Σ WL Measurement Min Median Mean Std.Dev. Std.Err. Σ WL Measurement Min Max Median Mean Std.Dev. Std.Err. Max < 25°C 0.00083 0.36000 0.01800 0.04377 0.05060 0.00221 < 25°C 0.00267 0.13728 0.01500 0.04714 0.05065 0.00414 17.61541 $WL_{1,1}$ 53.92297 $WL_{1.1}$ > 25°C 0.07366 > 25°C 0.00267 0.27930 0.02231 0.07030 0.08565 0.00699 0.00100 0.28755 0.02200 0.05894 0.00321 0.04861 < 25°C 0.04876 < 25°C 0.00244 0.16359 0.01400 0.05337 0.00070 0.34000 0.02100 0.05830 0.00254 0.00436 53.51435 $WL_{1,2}$ $WL_{1,2}$ 16.08108 > 25°C 0.00297 > 25°C 0.00599 0.00089 0.39874 0.02000 0.05317 0.06804 0.00178 0.23166 0.01500 0.05859 0.07342 < 25°C 0 0.08281 0.00472 0.01431 0.00062 < 25°C 0 0 0 0 0 0 0 10.97640 $WL_{2,1}$ 36.15943 $WL_{2.1}$ 0.00694 > 25°C 0.00100 0.44075 0.02642 0.06415 0.08218 0.00359 > 25°C 0.00267 0.29200 0.02486 0.07318 0.08504 < 25°C 0.10100 0.00480 $< 25^{\circ}C$ 0 0 0.01471 0.00064 0 0 0 0 0 0 31.57160 $WL_{2.2}$ 10.02343 $WL_{2,2}$ > 25°C 0.00319 $> 25^{\circ}C$ 0.08074 0.00659 0.00100 0.37200 0.02066 0.05534 0.07307 0.00200 0.31474 0.02239 0.06682

Use Case 1: SecurityCosts_{CPS1} =
$$(53.92297 - 53.51435) + 17.61541 = 18.02403 + f_{MT_0}(n)$$

Use Case 2: SecurityCosts_{CPS1} = $(36.15943 - 31.57160) + 10.97640 = 15.56423 + f_{MT_0}(n)$ Algorithmic Complexity Constants

Summary & Future Work

weighting & aggregation

Output 1

normalisation,

weighting &

aggregation

Summary & Future Work

incl. comparing the planned and the actual workflow of the CPS "CPS-as-it-should-be" vs. "CPS-as-it-is" \bigcirc (1)

Start Event

 Experimental Setup Cyber-Physical Systems Onion Layer Model Results **Conclusions** • ٠ Lancaster Strain University Summary & Future Work Service Authorisation Interaction i Registry System participates in Component cperformed by rchestration Security-Related Task Output 1 IoT System measures Framework -Metric *m* • resulted from Т6 Security Cos T7 CYBER normalisation, weighting & $SecurityCosts_{CPS_1} =$ $c_{icsm} * W_{MT_i}$ aggregation Т9 PHYSICAL $i=1 \ c=1 \ s=1 \ m=$ Simulation Interaction Monitoring the & Output 2 Output 3 Output 4 Visualisation Security Costs Optimisation over time 16.00 new CPS config Business Process Business Process Diagram with Lanes 0 Security Cost Optimisation current CPS config 14 00 MAX 12.00 Start Even End Event One 10.00 8.00 6.00 End Event Two 4.00 direct direct MIN 2.00 ► relation relation End Event Thre 0.00 Generation know the "nature" of security costs of a CPS usage of genetic and selective algorithms to simulate incl. comparing the planned and the actual workflow of the CPS in case security costs rise above MAX or drop below MIN: "CPS-as-it-should-be" vs. "CPS-as-it-is" possible interaction configurations (e.g. protocols) -) identify affected/responsible components and measure their resulting security costs (2)

Lancaster University Summary & Future Work Service Authorisation Interaction i Registry System participates in Component cperformed by rchestration Security-Related Task Output 1 IoT System measures Framework -Metric *m* < resulted from Т6 Security Cos T7 CYBER normalisation, weighting & SecurityCosts_{CPS1} = $\dot{x}_{icsm} * W_{MT_i}$ aggregation Т9 PHYSICAL $i=1 \ c=1 \ s=1 \ m=$ Simulation Interaction Monitoring the & Output 2 Output 3 Output 4 Visualisation Security Costs Optimisation over time new CPS config usiness Process Business Process Diagram with Lanes 0 **Cost Optimisation** current CPS config MAX 12.00 Start Even End Event One 8.00 urity End Event Two direct direct MIN 2.00 ••• relation relation End Event Thre 0.00 Generation know the "nature" of security costs of a CPS usage of genetic and selective algorithms to simulate incl. comparing the planned and the actual workflow of the CPS in case security costs rise above MAX or drop below MIN: possible interaction configurations (e.g. protocols) "CPS-as-it-should-be" vs. "CPS-as-it-is" -) identify affected/responsible components and measure their resulting security costs (1)(2)

Experimental Setup

Results

•

Conclusions

٠

Onion Layer Model

Cyber-Physical Systems

Thank you for your attention

ORCID iD

(D) https://orcid.org/0000-0003-3037-7813

Google Scholar

https://scholar.google.at/citations?user=eWmRzy0AAAAJ&hl=de&oi=ao

arXiv

https://arxiv.org/search/cs?searchtype=author&query=lvkic%2C+I