Mobility Aware Service Orchestration in Mobile Edge Clouds

Saeid Ghafouri Academic Advisor: Joseph Doyle

🖂 s.ghafouri@qmul.ac.uk

Service Orchestration

- Containerized softwares
- Google Borg
- Docker Swarm
- Kubernetes!

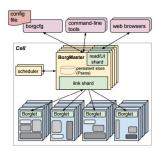
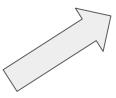
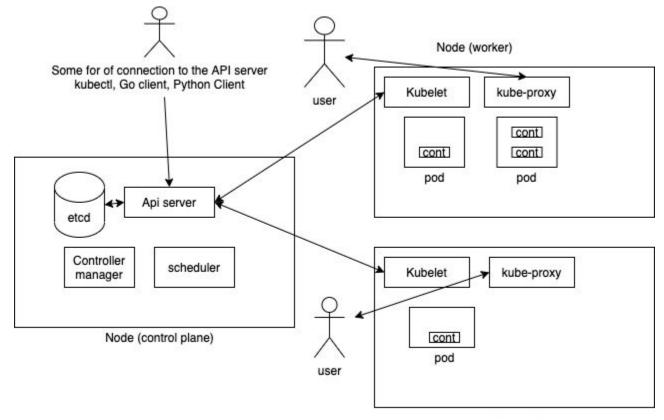


Figure 1: The high-level architecture of Borg. Only a tiny fraction of the thousands of worker nodes are shown.

kubernetes



Kubernetes Structure - Internals



Current Kubernetes Scheduling Model

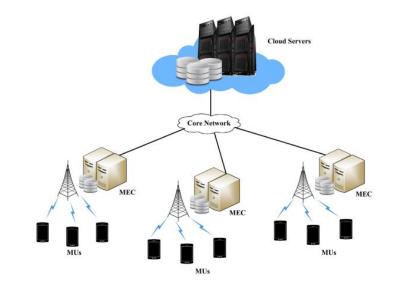
- Pods the smallest scheduling unit in kubernetes
- Currently the scoring is done based-on the rules defined by Kubernetes and Also heuristic algorithms
- Nodes available resources
- Requested resources
- A two step process
 - **Filtering**: Filtering out suitable nodes
 - Scoring: Ranks the nodes based-on a sets of criteria to find the most suitable node
- Assingn the pod to the node with the highest rank

Kubernetes Limitations

- Kubernetes is great for centralised cloud and dominates the market
- Making Kubernets consistent with edge e.g. kubeedge
- **Research Question**: Can we optimise it's scheduling for latency intensive applications based-on **users' mobility** in mobile edge computing while considering **energy consumption**?
- Unrealistic assumptions in previous simulation-basd work

Mobile Edge Computing

- The vision for edge computing is to provide compute and storage resources close to the user in open standards and ubiquitous manner.
- Reducing the latency
- Examples:
 - Video streaming/processing
 - Virtual/augmented reality
 - Gaming-as-a-service



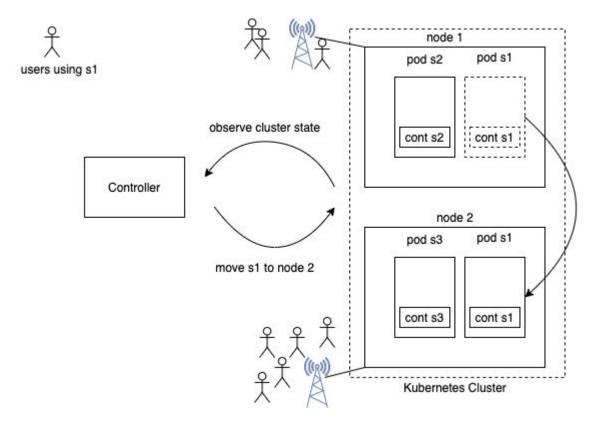
A Simple Scenario

- We have a set of services running on a network of connected servers on the edge of the cloud.
- Users are connected to them via a set of base-stations.
- Each user is only connected to one base station which is the closest base station to that user.
- Users might move around the set of stations.
- The station that the user is connected, could change if its new location is closer to another station.

Implementational Details - Kubernetes

- A Single pod with a single container for each service is considered
- A service is associated with each pod to expose it to the outside world
- A Controller outside the Kubernetes clusters observes the users movements and computes the new placement of pods based-on an reinforcement learning solution
- It then re-organise the services/pods to a new location based-on the current users' locations
- We have use Python client API to access the apiserver

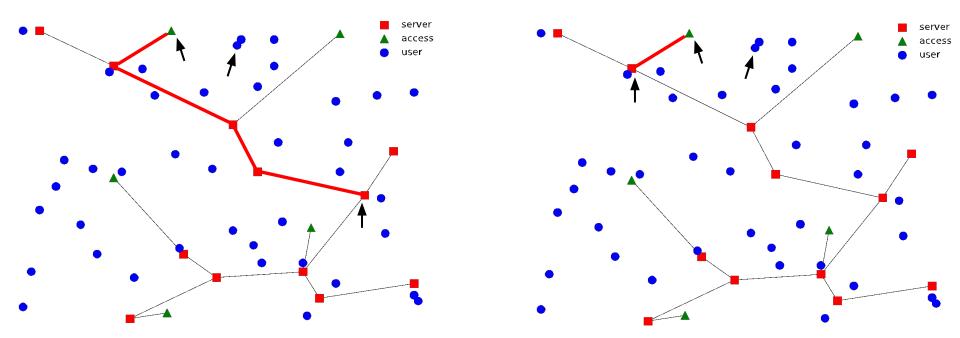
Implementational Details - Kubernetes



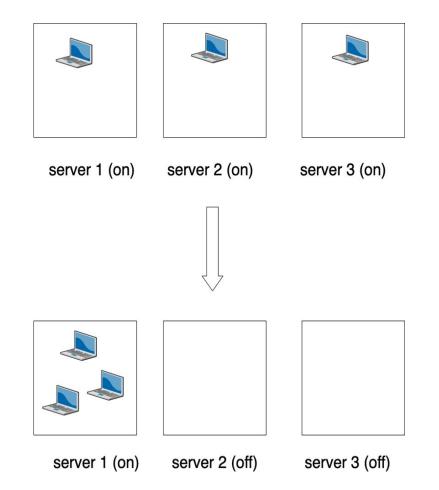
Implementational Details - User movements Simulations

- Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi cabs in San Francisco (USA), collected in May 2008.
- <u>http://www.antennasearch.com/</u> for the location of cell towers
- Python simulator for user mobility
- Real world Kubernetes clusters but the user mobility is simulation

First Objectives - Latency Reduction

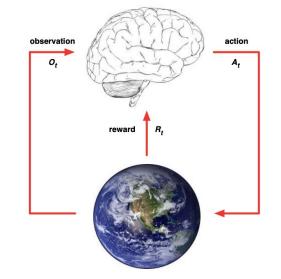


Second Objectives - Bin Packing



Reinforcement Learning as our Optimiser

- •At each step t the agent:
 - Executes action At Receives observation Q_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation Q_{t+1}
 - Emits scalar reward R_{t+1}
- We used an advance RL method called Proximal Policy Optimization (PPO)



Early Stage Experiments Setting

- Real-world experiments (work in progress) on GCP
- Rllib for RL implementation
- Baselines
 - Latency only
 - Greedy algorithm
 - Binpacking only
 - Best-fit bin-packing
 - E.g. Place the service on the server which has the maximum load where it fits

rllib

• 12 servers, 5 stations, 40 mobile devices

Google Cloud

RL Model

- RL reward signal is computed at the end of each episode (certain number of timesteps)
- For Consolidation objective:
 - R_c = (Number of empty servers)/(normalizing_factor) * penalty
- For Latency Objective
 - R_l = (Fraction of users reaching their target latency) * penalty
- Total Reward:
 - $R = w_0 R_c + w_1 R_l$

Early Stage Experiments Results



16

Limitations and Future works

- Real-world but not Kubernetes-native yet
 - Using Custom resource definitions
 - Using Operators
- Some of container migration and networking challenges are not considered
 - Assuming stateless services with minimal migration cost
 - Consider stateful and stateless services
 - Simulation in the networking side and computing latency purely based-on distance

Thank you for your attention!

Please keep in touch if you are interested: s.ghafouri@qmul.ac.uk