Mobility Aware Service
Orchestration in Mobile Edge
Clouds

Saeid Ghafouri
Academic Advisor: Joseph Doyle

\Q:’ Queen Mary

rsity of London

> s.ghafouri@gmul.ac.uk

Service Orchestration

Containerized softwares
Google Borg

Docker Swarm
Kubernetes!

kubernetes

Kubernetes Structure - Internals

Some for of connection to the API server
kubectl, Go client, Python Client

user

\

w Api server
Controller
manager scheduler

Ty

i\

Node (control plane)

user

Node (worker)
 ————
Kubelet kube-proxy
[confl
[cont] [conf]
pod pod
Kubelet |_»| kube-proxy
[cont]
pod

Node (worker)

Current Kubernetes Scheduling Model

e Pods the smallest scheduling unit in kubernetes

e Currently the scoring is done based-on the rules defined by
Kubernetes and Also heuristic algorithms

e Nodes available resources

e Requested resources

e Atwo step process
o Filtering: Filtering out suitable nodes
o Scoring: Ranks the nodes based-on a sets of criteria to find the

most suitable node
e Assingn the pod to the node with the highest rank

Kubernetes Limitations

e Kubernetes is great for centralised cloud and dominates the market

e Making Kubernets consistent with edge e.g. kubeedge

e Research Question: Can we optimise it's scheduling for latency
Intensive applications based-on users’ mobility in mobile edge
computing while considering energy consumption?

e Unrealistic assumptions in previous simulation-basd work

Mobile Edge Computing

* The vision for edge computing is to provide compute and storage
resources close to the user in open standards and ubiquitous manner.
e Reducing the latency
e Examples:
 Video streaming/processing
 Virtual/augmented reality
* Gaming-as-a-service

A Simple Scenario

* We have a set of services running on a network of connected servers on the
edge of the cloud.

e Users are connected to them via a set of base-stations.

* Each user is only connected to one base station which is the closest base
station to that user.

* Users might move around the set of stations.

* The station that the user is connected, could change if its new location is
closer to another station.

Implementational Details - Kubernetes

* A Single pod with a single container for each service is considered
A service is associated with each pod to expose it to the outside world

A Controller outside the Kubernetes clusters observes the users movements

and computes the new placement of pods based-on an reinforcement
learning solution

It then re-organise the services/pods to a new location based-on the current
users’ locations

We have use Python client APl to access the apiserver

Implementational Details - Kubernetes

A

users using s1

Controller

observe cluster state

]

move s1 to node 2

; ii“fj)i

"""""""

node 2
pod s3 pod s1
| cont s3 | | cont s1 |

Kubernetes Cluster

Implementational Details - User movements Simulations

Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi cabs
in San Francisco (USA), coIIected in May 2008.

e hitp://www.antennasearch.com/ for the location of cell towers
Python simulator for user mobility
Real world Kubernetes clusters but the user mobility is simulation

10

http://www.antennasearch.com/

First Objectives - Latency Reduction

11

Second Objectives - Bin Packing

server 1 (on) server 2 (on) server 3 (on)

ﬂ

server 1 (on) server 2 (off) server 3 (off)

12

Reinforcement Learning as our Optimiser
« At each step t the agent:

* Executes action At Receives observation Q; _. \ U
* Receives scalar reward R; ¥
* The environment:
* Receives action A; /
* Emits observation Q41 4
* Emits scalar reward Ry ¢

* We used an advance RL method called Proximal Policy Optimization
(PPO)

13

Early Stage Experiments Setting

* Real-world experiments (work in progress) on GCP b
e Rllib for RL implementation

e Baselines

e Latency only =
* Greedy algorithm ll b

* Binpacking only
* Best-fit bin-packing

* E.g. Place the service on the server which has the maximum load
where it fits

Google Cloud

e 12 servers, 5 stations, 40 mobile devices

14

RL Model

“RL reward signal is computed at the end of each episode (certain
number of timesteps)

* For Consolidation objective:
* R, = (Number of empty servers)/(normalizing_factor) * penalty

* For Latency Objective
* R; = (Fraction of users reaching their target latency) * penalty

 Total Reward:
¢ R = WORC + wlRl

15

Early Stage Experiments Results

Number of Consolidated

4.0 e e e e e e e e e
Experiments
3.5 Ep
28 i
....... Cp . FRCTISURTTIN Skl ke 2
2.5 ---- Bestfit &
—-— Greedy
20 - I o O e Ty e m———
=’
1.51 RS o NI G- i '\f.[\, A
1.0 1
0.5 A
\‘\A_\/J
0.0+
0 20 40 60 80 100

Steps 5*1072

Fraction of Latency

0.7 A

S
(o))
1

o
&l

0.4

0.3 1

7 =---- Bestfit

k "N - ~h NN 4
I\ /.\ Pt Y _/V‘\/ \’f‘\,'v.\.r\ NAZ A '\/ NN k.'\l ™

Experiments
R Lp
....... Cp

i S G N e AT

—-— Greedy

‘IM ": "\"’ oy ,\./\.’\‘,\J LG VRN

0 20 40 60 80 100
Steps S5*1072

500 A

400 4

300 A

200 A

Reward Value

Experiments
— Ep
—_— Lp

100

16

Limitations and Future works

 Real-world but not Kubernetes-native yet
e Using Custom resource definitions
e Using Operators

* Some of container migration and networking challenges are not considered
* Assuming stateless services with minimal migration cost
* Consider stateful and stateless services

e Simulation in the networking side and computing latency purely based-on
distance

17

Thank you for your attention!

Please keep in touch if you are interested:
s.ghafouri@gmul.ac.uk

18

