
Mobility Aware Service
Orchestration in Mobile Edge

Clouds
Saeid Ghafouri

Academic Advisor: Joseph Doyle

✉ s.ghafouri@qmul.ac.uk

Service Orchestration

● Containerized softwares
● Google Borg
● Docker Swarm
● Kubernetes!

2

Kubernetes Structure - Internals

3

Current Kubernetes Scheduling Model

● Pods the smallest scheduling unit in kubernetes
● Currently the scoring is done based-on the rules defined by

Kubernetes and Also heuristic algorithms
● Nodes available resources
● Requested resources
● A two step process

○ Filtering: Filtering out suitable nodes
○ Scoring: Ranks the nodes based-on a sets of criteria to find the

most suitable node
● Assingn the pod to the node with the highest rank

4

Kubernetes Limitations

● Kubernetes is great for centralised cloud and dominates the market
● Making Kubernets consistent with edge e.g. kubeedge
● Research Question: Can we optimise it’s scheduling for latency

intensive applications based-on users’ mobility in mobile edge
computing while considering energy consumption?

● Unrealistic assumptions in previous simulation-basd work

5

Mobile Edge Computing

• The vision for edge computing is to provide compute and storage
resources close to the user in open standards and ubiquitous manner.

• Reducing the latency

• Examples:

• Video streaming/processing

• Virtual/augmented reality

• Gaming-as-a-service

6

A Simple Scenario

• We have a set of services running on a network of connected servers on the
edge of the cloud.

• Users are connected to them via a set of base-stations.

• Each user is only connected to one base station which is the closest base
station to that user.

• Users might move around the set of stations.

• The station that the user is connected, could change if its new location is
closer to another station.

7

Implementational Details - Kubernetes

• A Single pod with a single container for each service is considered

• A service is associated with each pod to expose it to the outside world

• A Controller outside the Kubernetes clusters observes the users movements
and computes the new placement of pods based-on an reinforcement
learning solution

• It then re-organise the services/pods to a new location based-on the current
users’ locations

• We have use Python client API to access the apiserver

8

Implementational Details - Kubernetes

9

Implementational Details - User movements Simulations

• Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi cabs
in San Francisco (USA), collected in May 2008.

• http://www.antennasearch.com/ for the location of cell towers

• Python simulator for user mobility

• Real world Kubernetes clusters but the user mobility is simulation

10

http://www.antennasearch.com/

First Objectives - Latency Reduction

11

Second Objectives - Bin Packing

12

Reinforcement Learning as our Optimiser
•

13

Early Stage Experiments Setting

• Real-world experiments (work in progress) on GCP
• Rllib for RL implementation
• Baselines

• Latency only

• Greedy algorithm

• Binpacking only

• Best-fit bin-packing

• E.g. Place the service on the server which has the maximum load
where it fits

• 12 servers, 5 stations, 40 mobile devices

14

RL Model

•

15

Early Stage Experiments Results

16

16

16

Limitations and Future works

• Real-world but not Kubernetes-native yet

• Using Custom resource definitions

• Using Operators

• Some of container migration and networking challenges are not considered
• Assuming stateless services with minimal migration cost
• Consider stateful and stateless services
• Simulation in the networking side and computing latency purely based-on

distance

17

Thank you for your attention!

Please keep in touch if you are interested:
s.ghafouri@qmul.ac.uk

18

