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Service Orchestration

Containerized softwares
Google Borg

Docker Swarm
Kubernetes!

kubernetes




Kubernetes Structure - Internals

Some for of connection to the API server
kubectl, Go client, Python Client
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Current Kubernetes Scheduling Model

e Pods the smallest scheduling unit in kubernetes

e Currently the scoring is done based-on the rules defined by
Kubernetes and Also heuristic algorithms

e Nodes available resources

e Requested resources

e Atwo step process
o Filtering: Filtering out suitable nodes
o Scoring: Ranks the nodes based-on a sets of criteria to find the

most suitable node
e Assingn the pod to the node with the highest rank



Kubernetes Limitations

e Kubernetes is great for centralised cloud and dominates the market

e Making Kubernets consistent with edge e.g. kubeedge

e Research Question: Can we optimise it's scheduling for latency
Intensive applications based-on users’ mobility in mobile edge
computing while considering energy consumption?

e Unrealistic assumptions in previous simulation-basd work



Mobile Edge Computing

* The vision for edge computing is to provide compute and storage
resources close to the user in open standards and ubiquitous manner.
e Reducing the latency
e Examples:
 Video streaming/processing
 Virtual/augmented reality
* Gaming-as-a-service




A Simple Scenario

* We have a set of services running on a network of connected servers on the
edge of the cloud.

e Users are connected to them via a set of base-stations.

* Each user is only connected to one base station which is the closest base
station to that user.

* Users might move around the set of stations.

* The station that the user is connected, could change if its new location is
closer to another station.



Implementational Details - Kubernetes

* A Single pod with a single container for each service is considered
A service is associated with each pod to expose it to the outside world

A Controller outside the Kubernetes clusters observes the users movements

and computes the new placement of pods based-on an reinforcement
learning solution

It then re-organise the services/pods to a new location based-on the current
users’ locations

We have use Python client APl to access the apiserver



Implementational Details - Kubernetes
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Implementational Details - User movements Simulations

Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi cabs
in San Francisco (USA), coIIected in May 2008.

e hitp://www.antennasearch.com/ for the location of cell towers
Python simulator for user mobility
Real world Kubernetes clusters but the user mobility is simulation
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http://www.antennasearch.com/

First Objectives - Latency Reduction
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Second Objectives - Bin Packing

server 1 (on) server 2 (on) server 3 (on)

ﬂ

server 1 (on) server 2 (off) server 3 (off)
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Reinforcement Learning as our Optimiser
« At each step t the agent:

* Executes action At Receives observation Q; _. \ U
* Receives scalar reward R; ¥
* The environment:
* Receives action A; /
* Emits observation Q41 4
* Emits scalar reward Ry ¢

* We used an advance RL method called Proximal Policy Optimization
(PPO)
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Early Stage Experiments Setting

* Real-world experiments (work in progress) on GCP b
e Rllib for RL implementation

e Baselines

e Latency only =
* Greedy algorithm ll b

* Binpacking only
* Best-fit bin-packing

* E.g. Place the service on the server which has the maximum load
where it fits

Google Cloud

e 12 servers, 5 stations, 40 mobile devices
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RL Model

“RL reward signal is computed at the end of each episode (certain
number of timesteps)

* For Consolidation objective:
* R, = (Number of empty servers)/(normalizing_factor) * penalty

* For Latency Objective
* R; = (Fraction of users reaching their target latency) * penalty

 Total Reward:
¢ R = WORC + wlRl
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Early Stage Experiments Results
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Limitations and Future works

 Real-world but not Kubernetes-native yet
e Using Custom resource definitions
e Using Operators

* Some of container migration and networking challenges are not considered
* Assuming stateless services with minimal migration cost
* Consider stateful and stateless services

e Simulation in the networking side and computing latency purely based-on
distance
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Thank you for your attention!

Please keep in touch if you are interested:
s.ghafouri@gmul.ac.uk
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