Scalable in-network
caching for Kubernetes

STEFANOS SAGKRIOTIS

>3 kubernetes

Its architecture:

**Drove transition to era of
microservices.

**Enabled scalable deployment
in heterogeneous (3 -
infrastructure. ‘ =g ©

s Allowed extensible \ ool &
components. :ﬁ— S

Node Node Node e
api
/ ‘ kubelet

kubele]

W W W

[L.l [1d

- -
ubele |
etcd

K-proxy
L) L) L]
Scheduler
sche
-Prox

o - Control plane ——————-

Node

Main components

)
a
Ql

Node Node Node (persistence store)

e e e e e e e e e e e, S S ~
’ I APIserver @j
I Cloud

@ @ I provider Cloud controller
k I API manager @
n . = I (optional) coem

E I Controller
: I manager @

r A I
l 5, :I:H e
<_|7

kubelet

|
I

I w)

g [y @
L)
eted @ | kubele kubelel kubele kube-proxy

sched I
|
)

=
=
o
o
@

=~

B
5]
3

W v W
g{g 35 2;:; Scheduler

A
f
S
2

{‘—_—_______________\
°

Kk-prox; K-prox k-prox;
e e e e e e e e e e e S S Control plane _______

Node

/ooming in

Etcd: coordination services for the control plane — through the API.

Etcd metrics:

nginx deployment scale: 2 — 10— 15 — 25 pods

s ~15.3k reads

55% of all reads are directed to 25 KV pairs
~2.9k writes (16%)

90 watches

3.1k consensus proposals

L)

S

%

K/ K/ L/
000 000 0.0

Etcd benchmark:
¢ Average write query duration: 0.21s
¢ Average read query duration: 0.7ms | throughput: 1400QPS

Conclusion

In-network caching (NetChain)

=Latency in current coordination services:

Client -> Server -> Client Server Switch
Example NetBricks [12] Tofino [13]
Packets per sec. 30 million a few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Multiple RTTs required for consensus Processing delay 10-100 us < lus
- Latency for In_SWItCh Coord I nat|0n . =i = MetChain{max) == NetChain{3) =%F= NetChain(1)
=dr— MetChain{d) == NetChain(2) == Zookeeper
Client -> Network switch -> Client F200] o-e--ie-i0--u-e
E 8O T o r s 1
— &80L = £ 2
B 40} e = =l =
& 20 v—= » » -
Match-Action Table Register Array (RA) E 015 T
= . - —i L) |
Wath [Action ___ = o A——

0 3z 64 96 128
Value Size (Byte)

Key = X (0xfb2d7326dd4e36ac) Read/Write RA[0] —

Key =Y (0xfa21549a1e8926a7) Read/Write RA[5]
Key = Z (0xfbeb2c7e4db86208) Read/Write RA[2]

default Drop()

ia) Throughput vs. value size.

(S, B (V53 [\ R Bl (]

Room for improvement?

How Chain works:

* Reads/Writes travel to Tail
* Link saturation becomes possible.

Write Read Read/Write
Request Request Reply

Head Replica Tall

* Latency increases with distance from tail.
* Chain size becomes a factor of performance.

Room for improvement?

[o]
o

[=@= NeiChain (read)
== NetChain (write)

[o)]
o
!

netChain on scalability:

Throughput (BQPS)
NooA
o o

o

20 40 60 80 100
Number of Switches

(]

(f) Scalability (simulation).

loads. Both throughputs grow linearly, because in the
d { two-layer network, the average number of hops for a|)
query does not change under different network sizes.

CRAQ

Or Chain Replication with Apportioned Queries

Read Request | | Read Request | |Read Request| |Read Request Write Request Dirty Read Clean Read
VLK,V] Ki f‘*’l
= ¥
:/__.-" \\ I"’-‘_.--' -\\‘:‘:._...
. HEAD ~--> replica -~ —>

* Tail is not always the reference point:
* Each node “knows” whether the version it holds is clean or dirty.

* Clean: node responds directly.
* Dirty: node fetches clean version from tail.
* A write is marked clean when received by tail, which then sends acknowledgement to nodes.

* Consistency can be relaxed to favour performance.

Smaller packet format

Control plane
Proposed packet format: y

Pl

ETH| IP |(UDP KV_OP KEY_ID VALUE

Execur’,

Action headers &
metadata

NetChain’s packet format:

Default action

L2/L3 routing NetChaiirouting

ETH || IP |[UDP| SC Sy S; .../ S OP 'SEQ KEY VALUE

inserted by head switch]

reserved port # [read, write, delete, etc.]

(b) NetChain packet format.

All chain IPs are on packet: chain size dictates packet’s size. We propose storing this info in data plane.

Used structures

Using switch registers for storage.

Objects store:

R1 | R Rn |Rn+1 Ron Rkn
\] | J
Y Y !
Allocated to object 1 Allocated to object 2 Stores k objects of
up to n versions per
object

Control plane

i.e., The register can support up to n dirty versions per object.

Fast access but limited resource. Both k and n need to be fixed.

Key Action

ad

headers & ‘ e
metadata | ookup key Lookup table e
Default action

Q
3
=
s}
(s}
~J

Used structures

Auxiliary registers:

Read index:

Ry | Ro Rk

° Increases based on dirty commits.
o Resets when commit is clean.

> Allows implicit definition of
read/dirty reads.

R1 R2 vaa Rn Rn+'| e R2n . Rkn Control plane

]

Key Action

headers &
metadata | ookup key Lookup table

Default action

metadata

Ingress control

- objects_store: stores all KV data

- read_index: points to latest read committed for each object in
objects_store

- write_index: points to next write position for each object in
objects_store

if kvop == READ then

get_read_index();

if meta.read_inder == 0 then
| read_operation();

else if meta.my_role == TAIL then

get_last_read_index();
read_operation();

else
| forward_to_tail();

else if kv_op == WRITE then

get_write_index();

if meta.write_inder == () then

clean_write();

forward_to_tail();

else

if meta.write_inder >= NUMBER_OF_VERSIONS then
| drop():

else

dirty_write();

forward_to_tail();

if meta.my_role == TAIL then

generate_acknowledgement();
clean_write();
multicast();

else if kv_op == ACKNOWLEDGEMENT then
clean_write();

Stored in data plane

Control plane

N
Key Action

Default action

<
\

action
code
~——T11

Action
mel

tadata

Acknowledgments always reset indexes

Improvement over sequential forwarding

Perf evaluation

Read QPS vs distance from tail

100000 -
* NetCRAQ outperforms netChain,
80000 - regardless of distance from tail.
* Dirty reads are affected, but perform
better than netChain.
£ 60000 - EEE netCRAQ ,
g mm netcrAQ diy | © Dirty reads should be a percentage of
0 B netChain the workload.
40000 -
20000 A
0 -

0 1 2 3
hops from tail

Perf evaluation

Read latency vs QPS

| == netcrAQ
| Il netChain
1073)
] * NetCRAQ's fewer hops allow fast
o] responses regardless of QPS or
g distance from tail.
[}]
L
1074]
| —_— — ; L
50I00 10600 20600

Read QPS

Perf evaluation

Read QPS vs write percentage

100000 1 —o— NetCRAQ PP
—— NetChain - - 600
800007 |, 2 ° Writes are more expensive
E transactions than reads.
¥ 60000 A L 400 © .
% 400 > = Another win for netCRAQ.
g =
3 10000 L3005 ° At the cost of having enough registers
% to commit dirty writes.
- 200 ©
=
20000 A 100

Write percentage (%)

Perf evaluation

Varying chain length

100000 -

@ & & & 9
80000 A
* Comparison in head nodes. (slightly
[¥g] .
& 00007 —o— NetCRAQ unfair)
-o i . .
i —¢ NetChain * Shows potential gap in performance
40000 A
20000 1 e —
4 5 6 7 8

Chain size

Proposed Kubernetes architecture

v Kubernetes Control Plane - Rack 1 V Rack 2 N\
Controller . Scheduler ToR Switch ToR Switch m
manager AP|
Key Action Key Action
etcd leader - Calico CNI r T r 1
. P4 [Het P4
P4 Runt -] NetCRAQ NetCRAQ
KV Iw Runtime code Runtime code
metrics SnapShOt NetCRAQ T "
placement]|[Ca/ICOC
Write
ahead lo Kube |I API Etcd leader:
\ 9] |gRPC controllers | Server| / ' .
& i * KV metrics
l etcd] I etcd I CNI:
node 1 node 2 . . -
* Runtime statistics
* Placement algorithm
ToR switch:

* (Counters

Future steps

1. Conclude Tofino implementation.
2. Integrate PARuntime APl to CNI

3. Evaluate end-to-end workloads

Thanks!

