
Scalable in-network
caching for Kubernetes
STEFANOS SAGKRIOTIS

2-page extended abstract accepted @ SIGCOMM 2022, 22-26 August, Amsterdam, Netherlands.

Its architecture:
❖Drove transition to era of

microservices.
❖Enabled scalable deployment

in heterogeneous
infrastructure.

❖Allowed extensible
components.

Main components

Zooming in
Etcd: coordination services for the control plane – through the API.

Etcd metrics:
nginx deployment scale: 2 – 10 – 15 – 25 pods

❖ ~15.3k reads
❖ 55% of all reads are directed to 25 KV pairs
❖ ~2.9k writes (16%)
❖ 90 watches
❖ 3.1k consensus proposals

Etcd benchmark:
❖ Average write query duration: 0.21s
❖ Average read query duration: 0.7ms | throughput: 1400QPS

Conclusion

In-network caching (NetChain)
▪Latency in current coordination services:

Multiple RTTs required for consensus

▪Latency for in-switch coordination:

Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C. and Stoica, I., 2018. Netchain: Scale-free sub-rtt coordination. In 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 18) (pp. 35-49).

Client -> Network switch -> Client

Client -> Server -> Client

Room for improvement?

• Reads/Writes travel to Tail
• Link saturation becomes possible.

• Latency increases with distance from tail.

• Chain size becomes a factor of performance.

How Chain works:

S0 S1 S2

Room for improvement?

”“

Jin, Xin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. "Netchain: Scale-free

sub-rtt coordination." In 15th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 18), pp. 35-49. 2018.

netChain on scalability:

CRAQ
Or Chain Replication with Apportioned Queries

Terrace, Jeff, and Michael J. Freedman. "Object Storage on CRAQ: High-Throughput Chain Replication for Read-Mostly

Workloads." In USENIX Annual Technical Conference, no. June, pp. 1-16. 2009.

• Tail is not always the reference point:
• Each node “knows” whether the version it holds is clean or dirty.
• Clean: node responds directly.
• Dirty: node fetches clean version from tail.
• A write is marked clean when received by tail, which then sends acknowledgement to nodes.

• Consistency can be relaxed to favour performance.

Smaller packet format
Proposed packet format:

NetChain’s packet format:

All chain IPs are on packet: chain size dictates packet’s size. We propose storing this info in data plane.

Used structures
Using switch registers for storage.

Objects store:

i.e., The register can support up to n dirty versions per object.

Fast access but limited resource. Both k and n need to be fixed.

Allocated to object 1 Allocated to object 2 Stores k objects of
up to n versions per
object

Used structures
Auxiliary registers:

Read index:

◦ Increases based on dirty commits.
◦ Resets when commit is clean.
◦ Allows implicit definition of

read/dirty reads.

Ingress control

Stored in data plane

Acknowledgments always reset indexes

Improvement over sequential forwarding

Perf evaluation

• NetCRAQ outperforms netChain,
regardless of distance from tail.

• Dirty reads are affected, but perform
better than netChain.

• Dirty reads should be a percentage of
the workload.

Read QPS vs distance from tail

Perf evaluation

• NetCRAQ’s fewer hops allow fast
responses regardless of QPS or
distance from tail.

Read latency vs QPS

Perf evaluation

• Writes are more expensive
transactions than reads.

• Another win for netCRAQ.

• At the cost of having enough registers
to commit dirty writes.

Read QPS vs write percentage

Perf evaluation

• Comparison in head nodes. (slightly
unfair)

• Shows potential gap in performance

Varying chain length

Proposed Kubernetes architecture

Etcd leader:
• KV metrics

CNI:
• Runtime statistics
• Placement algorithm

ToR switch:
• Counters

Future steps
1. Conclude Tofino implementation.

2. Integrate P4Runtime API to CNI

3. Evaluate end-to-end workloads

Thanks!

