‘-Qs’ Queen Mary

rsity of London

CPU Schedulers are

Interesting
Alireza Sanaee (QMUL)

Work in collaboration with
Jack Humphries (Stanford),
Sebastiano Miano (QMUL),

Christos Kozyrakis (Stanford),
Gianni Antichi (QMUL)

What a CPU scheduler is:

What a CPU scheduler is:

@
User space

Tensorflow

What a CPU scheduler is:

IHE%HH!HIHHHH%EHHHIIﬂqaiiil'
User space

Kernel space

Tensorflow

CPU Scheduler

CPU scheduler decides who gets the CPU next!

Why is CPU scheduling important now?

Why is CPU scheduling important now?

[ghOSt, SOSP’21]

Server machines typically have 256 or 512 logical cores at data centers!

Why is CPU scheduling important now?

[ghOSt, SOSP’21]

Server machines typically have 256 or 512 logical cores at data centers!

| have lots of cores! Who cares?

What does it take for an application to achieve 100 Gbps?

User space

Kernel space

CPU Scheduler

Throughput (Gbps)

Workload demand is high!

100 1
501
032 16 32 64
Number of CPUs

(a)
—+— Memcached (Value Size: 4.8KB)

Workload demand is high!

[—
o
o

Throughput (Gbps)
(9]
o

o

4 16 32 64
Number of CPUs
(a)

-+ Memcached (Value Size: 4.8KB)

Memcached needs 32 cores to

achieve 100 Gbps with large values

10

There is a poor guy, CPU scheduler!

Needs to do a lot of things, so FAST

11

We do have fast CPU scheduling mechanisms, don’t we?

IX: A Protected Dataplane Operating System for
High Thronshnnt and T.ow [.atencv
Arrakis: The Operating System is the Control Plane

Adam Belay' Ge

Chr- [o BESORSIGHEE TS S D i DT O - T - 770 N--n ¥ PortS*

When Idling is Ideal: Optimizing Tail-Latency for Doug Woos

.;.
Zyg(Heavy-Tailed Datacenter Workloads with Perséphone - - hy Roscoe
1d-scale Tail Latency

- Henri Maxime Demoulin Joshua Fried Isaac Pedisich
M I c University of Pennsylvania, USA MIT CSAIL, USA Grammatech*, USA
Marios Kogias Boon Thau Loo Linh Thi Xuan Phan Tigar Humphriesl
N - Microsoft Research, United Kingdom University of Pennsylvania, USA University of Pennsylvania, USA
- Irene Zhang
Shenango: A« Mieroseft Recermts USA iter Workloads

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, Hari Balakrishnan
MIT CSAIL

12

We do have fast CPU scheduling mechanisms, don’t we?

IX: A Protected Dataplane Operating System for
High Thronshnnt and T.ow I .atencv
Arrakis: The Operating System is the Control Plane

Adam Belay' Ge

Chr*- SRR o) . W T W 23K RN o [US N T Y7 "
' When Idling is Ideal: Optimizing Tail-Latency for Ports” Doug Woos
hy Roscoe’

Zyg(Heavy-Tailed Datacenter Workloads with Perséphone - =
1d-scale Tail Latency

Henri Maxime Demoulin Joshua Fried Isaac Pedisich
M I c University of Pennsylvania, USA MIT CSAIL, USA Grammatech*, USA
Marios Kogias Boon Thau Loo Linh Thi Xuan Phan Tigar Humphriesl
) - Microsoft Research, United Kingdom University of Pennsylvania, USA University of Pennsylvania, USA
- Irene Zhang
Shenango: A« Mieroseft Recermts USA iter Workloads

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, Hari Balakrishnan
MIT CSAIL

These systems are highly specialized for a particular application.

It is not only about one or two types of applications!

Spoﬁ(? mNGINX ‘

TIMESCALE

14

It is not only about one or two types of applications!
55‘0”} m NGINX

®pinot
TIMESCALE

A single application with different workloads may need multiple

&

policies

15

It is not only about one or two types of applications!

Spoﬁg muemx

TIMESCALE

A single application with different workloads may need multiple
policies

Co-located applications just exacerbates the situation

We need flexibility in enforcing policies for different
applications and workloads

17

We need flexibility in enforcing policies for different
applications and workloads

ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling

Jack Tigar Humphries!, Neel Natu', Ashwin Chaugule!, Ofir Weisse!, Barret Rhoden!, Josh Don!,
Luigi Rizzo!, Oleg Rombakh!, Paul Turner!, Christos Kozyrakis2

! Google, Inc. ? Stanford University

18

We need flexibility in enforcing policies for different
applications and workloads
ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling

Jack Tigar Humphries!, Neel Natu!, Ashwin Chaugule!, Ofir Weisse!, Barret Rhoden!, Josh Don',
Luigi Rizzo!, Oleg Rombakh!, Paul Turner!, Christos Kozyrakis2

! Google, Inc. ? Stanford University

Flexible policy

enforcement

19

We need flexibility in enforcing policies for different
applications and workloads
ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling

Jack Tigar Humphries!, Neel Natu!, Ashwin Chaugule!, Ofir Weisse!, Barret Rhoden!, Josh Don!,
Luigi Rizzo!, Oleg Rombakh?, Paul Turner!, Christos Kozyrakis?

! Google, Inc. 2 Stanford University

Flexible policy Ease of policy

enforcement development in the
userspace

20

We need flexibility in enforcing policies for different
applications and workloads

ghOSt: Fast & Flexible User-Space Delegation
of Linux Scheduling

Jack Tigar Humphries!, Neel Natu!, Ashwin Chaugule!, Ofir Weisse!, Barret Rhoden!, Josh Don!,
Luigi Rizzo!, Oleg Rombakh!, Paul Turner!, Christos Kozyrakis2

! Google, Inc. 2 Stanford University

Ease of policy

Flexible policy No change to the

enforcement development in the
userspace

legacy applications

21

How does ghOSt work?

|
g Workload 4
| 1
: Optional scheduling hints !
iThread/CPU Messages v
Kernel | »| ghOSt agents
Status words
>
ghOSt | Transactions Q
scheduling class | [} CPU scheduling
. Syscalls . .
decisions

<

22

Oh wait! but these do not come for FREE!

23

Consequences of user space scheduling

High Latency Wasted Compute

24

Consequences of user space scheduling

High Latency Wasted Compute

25

26

I 12 cores

IDLING

- 219GZM8CT
- A8CTAY9
- AV9CE
- AZCEN9T
- 91218

- A8y

- AL

- AT

- ATMS0

- T16-96¢
- GGZ-8C1

CPU IDLING (us)

LCT-¥9
€9-¢¢
TE-91
ST-8
Ly

g-c

T-0

800 A
700 A
600 -
500 A
200 A
100 A

Aduanbayy

~

IDLING

27

- M95ZH8TT
- JI8ZTHY9
- IP9MTE

- IZEMNIT

- 918

- I8
AT
MHTHT

B 12 cores
Il 46 cores

ATAS0
TT1S-94¢
GGZ-8C1

CPU IDLING (us)

LZT-¥9
€9-¢t
T€-91
SI-8
LY

e-c

T-0

T
o
o
<
Adusnbalg

200 A
100 A

T

o
o
m

800 -
700 A
600 -
500 A

~

Ol

IDLING

Higher
IDLING

Lower
IDLING

28

- M95ZH8TT
- JI8ZTHY9
- IP9MTE

- IZEMNIT

- 918

- I8
AT
MHTHT

B 12 cores
Il 46 cores

ATAS0
TT1S-94¢
GGZ-8C1

CPU IDLING (us)

LZT-¥9
€9-¢t
T€-91
SI-8
LY

e-c

T-0

T

o
o
<

200 A
100 A

T

o
o
m

800 -
700 A
600 -
500 A

Adusnbalg

~

Ol

User space

Why do we have IDLING?

Kernel space

29

User space

Why do we have IDLING?

Kernel space

30

User space

Why do we have IDLING?

Global Scheduler Core l

Kernel space

31

User space

Why do we have IDLING?

Global Scheduler Core l

TX1

Kernel space

32

User space

Why do we have IDLING?

Global Scheduler I Core l
TX1

/

Kernel space

33

User space

Why do we have IDLING?

Global Scheduler I Core l

X1
(J\

/

Runtime

Kernel space

34

User space

Why do we have IDLING?

Core 1

Global Scheduler
TX1

;

Kernel space

35

Why do we have IDLING?

Core 1

Global Scheduler
TX1

User space

;

Decision Making

Kernel space

36

Why do we have IDLING?

Global Scheduler I Core l
TX1

User space

|
\:\
|
I)
/
|
Decision Making | IDLE

R:\

Kernel space

37

Can we do better?

‘H-
-y

Run an application in while making a decision

Decision
Making

Oh wait! But we are in the kernel, not in userspace!

Decision
Making

BPF allows for:

Pushing arbitrary code without
kernel recompile! eB P F

Verifying code snippets!

41

With BPF, we can:

Make quicker decisions in the
kernel

42

With BPF, we can:

Make quicker decisions in the
kernel

Have better insights in the kernel

43

With BPF we can:

Make quicker decisions in the
kernel

Have better insights in the kernel

44

User space

With BPF, we can do better!

Global Scheduler I Core l

TX1

|

Kernel space

chedules

s

L

BPF policy 1

45

User space

With BPF, we can do better!

Global Scheduler I Core l

TX1

|

Kernel space

I Schedules
BPF policy 1

46

With BPF, we can do better!

Global Scheduler

TX1

User space

Decision Making

;

Core 1

Kernel space

Schedules
BPF policy 1

47

With BPF, we can do better!

Global Scheduler I Core 1
TX1 l

|

User space Kernel space

Schedules
BPF policy 1

Decision Making Schedules

BPF policy 2

48

With BPF, we can do better!

Global Scheduler I Core l
TX1 l
User space \:\I' Kernel space
Schedules

BPF policy 1

Decision Making Schedules

BPF policy 2

49

What is the right trade-off between centralized CPU
scheduler and BPF?

Latency
4

» Optimal decision

50

What is the right trade-off between centralized CPU
scheduler and BPF?

Latency

4
0 o

A A

=

» Optimal decision

51

What is the right trade-off between centralized CPU
scheduler and BPF?

Latency

Userspace
Scheduler

A A

=

» Optimal decision

52

What is the right trade-off between centralized CPU
scheduler and BPF?

Latency

BPF
scheduler

Userspace
Scheduler

A A

S~

» Optimal decision

53

Let’s extend ghost!

Kernel

Workload 4

Optional scheduling hints :

! Thread/CPU Messages

ghOSt
scheduling class

' Status words

\ 4

ghOSt agents"

)

I Transactions

' Syscalls CPU scheduling

« decisions
Legacy ghOSt

54

Let's extend ghost!

i I
g Workload 4 ! Workload 4
1 Il 1 1
T ‘ Optional scheduling hints ! i Optional scheduling hints !
-BPFl \
Kernel Thread/CPU Messages - ghOSt agentsv Kernel EThread/CPU Messages ghOSt agentSV
./\ | | BPF2 Status words N - Status words -~
ghOSst | l Transacﬁons' Q ghOSt I TransactionsV O
scheduling class BPF3 -+ S CPU scheduling scheduling class | [;< CPU scheduling
| : yscalls decisions . Syscalls decisi
- e isions
ghOSt BPF I Legacy ghOSt

55

Let’s implement a policy in BPF

How to implement CFS in BPF?

56

Existing BPF data structures

BPF only support hash-map &&
array

How to implement CFS in BPF?

57

Existing BPF data structures

How to implement CFS in BPF?

BPF only support hash-map &&
array

But we need red-black tree!

58

Conclusion

How much expressivity eBPF

would have for scheduling
policies?

59

Conclusion

How much expressivity eBPF
would have for scheduling
policies?

Do we need to extend the eBPF
ecosystem to be more suitable for
policy implementation?

60

Conclusion

How much expressivity eBPF
would have for scheduling
policies?

Do we need to extend the eBPF
ecosystem to be more suitable for
policy implementation?

How to address the trade-off between
faster reaction at BPF and optimal
decision at the userspace?

61

