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What a CPU scheduler is:
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CPU Scheduler

CPU scheduler decides who gets the CPU next!
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Why is CPU scheduling important now?

[ghOSt, SOSP’21]

Server machines typically have 256 or 512 logical cores at data centers!

| have lots of cores! Who cares?



What does it take for an application to achieve 100 Gbps?

User space

Kernel space

CPU Scheduler
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Workload demand is high!
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Workload demand is high!
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-+ Memcached (Value Size: 4.8KB)

Memcached needs 32 cores to

achieve 100 Gbps with large values
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There is a poor guy, CPU scheduler!

Needs to do a lot of things, so FAST
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We do have fast CPU scheduling mechanisms, don’t we?
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These systems are highly specialized for a particular application.




It is not only about one or two types of applications!
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It is not only about one or two types of applications!

Spoﬁg muemx

TIMESCALE

A single application with different workloads may need multiple
policies

Co-located applications just exacerbates the situation




We need flexibility in enforcing policies for different
applications and workloads
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We need flexibility in enforcing policies for different
applications and workloads
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We need flexibility in enforcing policies for different
applications and workloads
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Ease of policy

Flexible policy No change to the

enforcement development in the
userspace

legacy applications
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How does ghOSt work?

|
g Workload 4
| 1
: Optional scheduling hints !
iThread/CPU Messages v
Kernel | »| ghOSt agents
Status words
>
ghOSt | Transactions Q
scheduling class | [} CPU scheduling
. Syscalls . .
decisions

<
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Oh wait! but these do not come for FREE!
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Consequences of user space scheduling

High Latency Wasted Compute
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Consequences of user space scheduling

High Latency Wasted Compute
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IDLING
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User space

Why do we have IDLING?

Kernel space
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User space
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User space
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User space
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Why do we have IDLING?
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Can we do better?

‘H-
-y




Run an application in while making a decision

Decision
Making




Oh wait! But we are in the kernel, not in userspace!

Decision
Making




BPF allows for:

Pushing arbitrary code without
kernel recompile! eB P F

Verifying code snippets!
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With BPF, we can:

Make quicker decisions in the
kernel
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43



With BPF we can:

Make quicker decisions in the
kernel

Have better insights in the kernel

44



User space

With BPF, we can do better!
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With BPF, we can do better!
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With BPF, we can do better!
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BPF policy 2
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What is the right trade-off between centralized CPU
scheduler and BPF?

Latency
4

» Optimal decision
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What is the right trade-off between centralized CPU
scheduler and BPF?
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What is the right trade-off between centralized CPU
scheduler and BPF?
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» Optimal decision
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Let’s extend ghost!

Kernel

Workload 4

Optional scheduling hints :

! Thread/CPU Messages

ghOSt
scheduling class

' Status words

\ 4

ghOSt agents"

)

I Transactions

' Syscalls CPU scheduling

« decisions
Legacy ghOSt
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Let's extend ghost!

i I
g Workload 4 ! Workload 4
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Let’s implement a policy in BPF

How to implement CFS in BPF?

56



Existing BPF data structures

BPF only support hash-map &&
array

How to implement CFS in BPF?
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Existing BPF data structures

How to implement CFS in BPF?

BPF only support hash-map &&
array

But we need red-black tree!

58



Conclusion

How much expressivity eBPF

would have for scheduling
policies?
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Conclusion

How much expressivity eBPF
would have for scheduling
policies?

Do we need to extend the eBPF
ecosystem to be more suitable for
policy implementation?
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Conclusion

How much expressivity eBPF
would have for scheduling
policies?

Do we need to extend the eBPF
ecosystem to be more suitable for
policy implementation?

How to address the trade-off between
faster reaction at BPF and optimal
decision at the userspace?
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