
Compiler-Driven End-Host 
Network Stacks

Sebastiano Miano, Farbod Shahinfar, Alireza Sanaee, Gianni Antichi

COSENERS 2022



End-Host

User space

Kernel space

eBPF

Netmap

2

SmartNIC (FPGA, NPU, IPU, SoC)

State of the Art in End-Host Network 
Programming



No One-Size-Fits-All Solution

1. The choice of where to place a given functionality is not only
restricted to the capabilities of a given layer
• It may depend also on the traffic that the application is processing

• E.g., NIC or Userspace for traffic that is redirected from one host to 
the other



No One-Size-Fits-All Solution

1. The choice of where to place a given functionality is not only
restricted to the capabilities of a given layer
• It may depend also on the traffic that the application is processing

• E.g., Kernel for Container-to-Container traffic



It gets even worse

2. It’s not only matter of deciding where to place a given program, but 
also how to place it (or part of it)
• E.g., by splitting a program logic between kernel/userspace we can get better 

performance [1]

[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the 17th 

International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).



Our idea: Compiler-Driven End-Host Network 
Stack
• We should start thinking to the end-host network stack as a 

programmable platform. 
• Behavior described at top, partitioned, compiled and run across elements

• This can allow us to introduce software 
engineering techniques to be used in all the 
layers of abstractions that we use to program 
the network
• Semantic verification
• Dynamic optimization
• Performance prediction



How to do it?

Our proposal

Use eBPF as main language to program the entire 
end-host networking stack 



Frankenstack

• Ambitious goal: Self adapting network stacks
• The compiler decides how to split/combine data plane programs, where to 

place, and how to optimize them at runtime

H
ard

w
are

U
ser-Sp

ace
K

ern
e

l-Sp
ace

Compiler

eBPF 
Engine

Table1

Table2

uBPF 
Engine

AF_XDP

CPU

eBPF 
Engine

TCAM

TCAM

Program Synthesis

Static Analysis

V
er

if
ie

r

int process_packet(pkt) {
u32 backend_idx;

parse_l3_headers(pkt);
parse_l4_headers(pkt);

vip.vip = pkt.dstIP;
vip.port = pkt.dstPort;
vip.proto = pkt.proto;
vip_info = lookup(vip);



eBPF as the “perfect” DSL for host-based NFs

1. eBPF is the “de-facto” language to program the Linux kernel
• This is not restricted only to networking functionality but also tracing, 

observability, security, and many others…



eBPF as the “perfect” DSL for host-based NFs

2. eBPF language is Turing complete

• Not the kernel code, since it is constrained by the verifier
• Only bounded loops

• Limited complexity (for verifiability)

• Restricted functions & libraries



eBPF as the “perfect” DSL for host-based NFs

3. Packet as first-class citizen
• This makes it easy to analyze the type of operations performed on the packet

• E.g., Which packet fields are read/written

Kernel

BPF 
NF1

int nf1_code(void *pkt) {

struct ethhdr *eth = pkt;
h_proto = eth->h_proto;

if (h_proto == htons(ETH_P_IP)) {
struct iphdr *ip = NULL;
ip = pkt + sizeof(struct eth_hdr);

uint32_t srcip = ip->saddr;
}

}

int nf1_code(void *pkt) {

struct ethhdr *eth = pkt;
h_proto = eth->h_proto;

if (h_proto == htons(ETH_P_IP)) {
struct iphdr *ip = NULL;
ip = pkt + sizeof(struct eth_hdr);

uint32_t srcip = ip->saddr;
}

}



eBPF as the “perfect” DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations

BPF_LPM(map1, uint32_t, uint64_t)
BPF_HASH(map2, uint16_t, uint64_t);
BPF_ARRAY(map3, uint16_t, uint64_t);

int nf1_code(void *pkt) {
...
uint32_t srcip = ip->saddr;
uint64_t *value;
value = bpf_map_lookup(map1, srcip);
...
bpf_map_update(map2, &h_proto, 1);

}

KEY VALUE

Kernel

BPF 
NF1

map1 map2 map3



eBPF as the “perfect” DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations
• Better performance prediction and semantic verification



First Step: Automatic splitting between k/u

• Automatic decomposition of eBPF programs between kernel and 
userspace [1] to achieve:
• Expressiveness

• Performance

[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the 17th 

International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).

BMC 
(kernel)

Split-BMC 
(k/u)

K Query/s

BMC 
(kernel)

Split-BMC 
(k/u)

Mbps



Second Step: Optimize the split program

• Automatic decomposition of eBPF programs between kernel and 
userspace [1] to achieve:
• Expressiveness

• Performance

15
[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the 

17th International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).



Nth Step: JIT-Compile Entire Network Stack

• Insight: the performance of data places depend on runtime conditions
• Why don’t we dynamically optimize the generated programs? 

• Across all the layers in the stack?

User-Space

uBPF 
Engine JIT Compiler

Kernel-Space

eBPF 
Engine

V
er

if
ie

r Kernel JIT

Hardware

CPU

eBPF 
EngineTCAM

TCAM JITNIC [1]

[1] JITNIC – eBPF and P4: Better Together – Nate Foster, Cornell (https://youtu.be/CFjZfIJ1NaU)

[2] Miano, Sebastiano, et al. "Domain specific run time optimization for software data planes." Proceedings of the 27th ACM International Conference on Architectural 

Support for Programming Languages and Operating Systems (ASPLOS). 2022. 

[2]

https://youtu.be/CFjZfIJ1NaU


Challenges

1. How can we guarantee correctness when the program is split 
between multiple parts? (e.g., hardware pipeline and software 
pipeline)

2. How can we handle the hardware/kernel heterogeneity?
• Different NICs have different accelerators and different hardware 

architecture.

3. How to make use of available hardware accelerators?
• Extract portion of code that can be “accelerated”




