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No Solution

1. The choice of to place a given functionality is not only
restricted to the capabilities of a given layer

* It may depend also on the traffic that the application is processing

* E.g., NIC or Userspace for traffic that is redirected from one host to
the other
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No Solution

1. The choice of to place a given functionality is not only
restricted to the capabilities of a given layer

* It may depend also on the traffic that the application is processing

* E.g., Kernel for Container-to-Container traffic
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It gets even

2. It's not only matter of deciding where to place a given program, but
also how to place it (or part of it)

* E.g., by splitting a program logic between kernel/userspace we can get better
performance [1]
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Compiler-Driven End-Host Network
Stack

* We should start thinking to the end-host network stack as a
programmable platform.

* Behavior described at top, partitioned, compiled and run across elements

* This can allow us to introduce software
engineering techniques to be used in all the
layers of abstractions that we use to program
the network

e Semantic verification
* Dynamic optimization
* Performance prediction




to do it? ﬁQBPF

Our proposal A

Use eBPF as main language to program the entire
end-host networking stack




 Ambitious goal: Self adapting network stacks

 The compiler decides how to data plane programs, where to
,and how to them
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eBPF as the DSL for host-based NFs

1. eBPFis the “de-facto” language to program the Linux kernel

* This is not restricted only to networking functionality but also tracing,
observability, security, and many others...
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eBPF as the DSL for host-based NFs

2. eBPF language is Turing complete @'@PF

* Not the kernel code, since it is constrained by the verifier
* Only bounded loops
 Limited complexity (for verifiability) P
* Restricted functions & libraries E

:



eBPF as the DSL for host-based NFs

3. Packet as first-class citizen

* This makes it easy to analyze the type of operations performed on the packet
* E.g., Which packet fields are read/written

int nfl _code(void *pkt) {

Kernel struct ethhdr *eth = pkt;
h_proto = eth->h_proto;

BPF if (h_proto == htons(ETH_P_IP)) {
NF1 struct iphdr *ip = NULL;
ip = pkt + sizeof(struct eth_hdr);

\ 4

uint32_t srcip = ip->saddr;

)’ I




eBPF as the

DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations

Kernel
mapl map2 map3
BPF
NF1

VALUE

ey

A 4

BPF_LPM(mapl, uint32 t, uint64 t)
BPF_HASH(map2, uintl6_t, uint64_t

BPF_ARRAY(map3, uintl6 _t, uint64_t);

int nfl _code(void *pkt) {

uint32_t srcip = ip->saddr;
uinté4_t *value;

value = bpf_map_lookup(mapl, srcip);

bpf_map_update(map2, &h proto,

)s

1);
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eBPF as the DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations
* Better performance prediction and semantic verification
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First splitting between k/u

* Automatic decomposition of eBPF programs between kernel and
userspace [1] to achieve:
* Expressiveness
* Performance
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Step: the split program

* Automatic decomposition of eBPF programs between kernel and
userspace [1] to achieve:

* Expressiveness
* Performance
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Entire Network Stack

the performance of data places depend on runtime conditions
 Why don’t we dynamically optimize the generated programs?
* Across all the layers in the stack?
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[1] JITNIC — eBPF and P4: Better Together — Nate Foster, Cornell (https://youtu.be/CFjZflJ1NaU)
[2] Miano, Sebastiano, et al. "Domain specific run time optimization for software data planes." Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 2022.
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https://youtu.be/CFjZfIJ1NaU
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1. How can we guarantee correctness when the program is split = 9
between multiple parts? (e.g., hardware pipeline and software -
pipeline) =

2. How can we handle the hardware/kernel heterogeneity?

e Different NICs have different accelerators and different hardware ©
architecture.

3. How to make use of available hardware accelerators?

* Extract portion of code that can be “accelerated”
3






