Compiler-Driven End-Host
Network Stacks

Farbod Shahinfar, Alireza Sanaee, Gianni Antichi

ZZZZZZZZZZZZ

Queen Mary
University of London

State of the Art in Network
Programming

End-Host

(User space \

_____ OvVS |
Kernel space
eBPF e —
[-—|'> e Ef
AVH =+
&
N e Y

SmartNIC (FPGA, NPU, IPU, SoC)

No Solution

1. The choice of to place a given functionality is not only
restricted to the capabilities of a given layer

* It may depend also on the traffic that the application is processing

* E.g., NIC or Userspace for traffic that is redirected from one host to
the other

Maglev: A Fast and Reliable Software Network Load Balancer

A High-Speed Load-Balancer Design with Guaranteed Per-Connection-Consistency

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,
Tom Barbette Chen Tang Haoran Yao Dejan Kostic Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Gerald Q). Maguire Jr. Panagiotis Papadimitratos Marco Chiesa Wentao Shane™ and Jinnah Dvlan Hosein®'
KTH Roval Institute of Technology - }
Google Inc. "UCLA *SpaceX

maglev-nsdi @ google.com

No Solution

1. The choice of to place a given functionality is not only
restricted to the capabilities of a given layer

* It may depend also on the traffic that the application is processing

* E.g., Kernel for Container-to-Container traffic

Revisiting the Open vSwitch Dataplane Ten Years Later

We Need Kernel Interposition over the William Tu P
VMware VMware
Network Dataplane United States United States
' tuci@vmware.com yihungw@vmware com
Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger,** Gianni Antichi Ben Paff
f e OO . as z o as . : alanmni 1C1 (=1 d
James C. Hoe, Aurojit Panda,” Justine Sherry Queen Mary University of London Vi:ware Research

“arnecie Me Iniversity ~ PO ® University of Was g ! r York University
Carnegie Mellon University Microsoft Research University of Washington New York University United Kingdor United States

g.antichif@gmul acuk bpfaff@vmware com

It gets even

2. It's not only matter of deciding where to place a given program, but
also how to place it (or part of it)

* E.g., by splitting a program logic between kernel/userspace we can get better
performance [1]

Poster: The Case for Network Functions Decomposition

Farbod Shahinfar Sebastiano Miano Alireza Sanaee
Shanf Unwversity of Technology Cueen Mary University of London (Jueen Mary Unversity of London
fshahinfar{@ce shanf.edu s.miano@qmul.ac.uk a.sanaee(@qmulac.uk
Giuseppe Siracusano Roberto Bifulco Gianni Antichi
WEC Laboratories Europe WEC Laboratones Europe (Queen Mary University of London
gluseppesiracusanoi@neclab.eu roberto.bifulco@neclab.en g.anbchi@gmul ac.uk

[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the 17th
International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).

Compiler-Driven End-Host Network
Stack

* We should start thinking to the end-host network stack as a
programmable platform.

* Behavior described at top, partitioned, compiled and run across elements

* This can allow us to introduce software
engineering techniques to be used in all the
layers of abstractions that we use to program
the network

e Semantic verification
* Dynamic optimization
* Performance prediction

to do it? ﬁQBPF

Our proposal A

Use eBPF as main language to program the entire
end-host networking stack

 Ambitious goal: Self adapting network stacks

 The compiler decides how to data plane programs, where to
,and how to them

4 N\ C

uBPF)

eBPF : :

Cl) &
4 Compiler :

(v 1 (7D<

parse 13 headers(pkt); [—— “ 3

Program Synthesis] a - a.q:J ™

_______ > 1 > - = —

Table2 Engme g -g’

T T T Q

1 ()

: (P

vin nornt — nl-+ Hc+D:\n+; [Static AnaIySiS]/ _
TCAM CPU
G 4 eBPF
TCAM Engine

alempJieH

eBPF as the DSL for host-based NFs

1. eBPFis the “de-facto” language to program the Linux kernel

* This is not restricted only to networking functionality but also tracing,
observability, security, and many others...

aeBPF Use Cases

Networking Security Observability &
Tracing
Projects @
bt cilium .
‘ i - App tracing
eBPF Libraries/SDKs s ® Wespr | 7O
Projects & SDKs GO G Application
Verifier & JIT O - Securi ¥ E;gr%a ili
Runtime awPF —iemo:}:i?gb& LBb“y
eBPF s ’
A Kernel
Helper SDK/API 2 3 &

Kernel Runtime Stack

eBPF as the DSL for host-based NFs

2. eBPF language is Turing complete @'@PF

* Not the kernel code, since it is constrained by the verifier
* Only bounded loops
 Limited complexity (for verifiability) P
* Restricted functions & libraries E

:

eBPF as the DSL for host-based NFs

3. Packet as first-class citizen

* This makes it easy to analyze the type of operations performed on the packet
* E.g., Which packet fields are read/written

int nfl _code(void *pkt) {

Kernel struct ethhdr *eth = pkt;
h_proto = eth->h_proto;

BPF if (h_proto == htons(ETH_P_IP)) {
NF1 struct iphdr *ip = NULL;
ip = pkt + sizeof(struct eth_hdr);

\ 4

uint32_t srcip = ip->saddr;

)’ I

eBPF as the

DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations

Kernel
mapl map2 map3
BPF
NF1

VALUE

ey

A 4

BPF_LPM(mapl, uint32 t, uint64 t)
BPF_HASH(map2, uintl6_t, uint64_t

BPF_ARRAY(map3, uintl6 _t, uint64_t);

int nfl _code(void *pkt) {

uint32_t srcip = ip->saddr;
uinté4_t *value;

value = bpf_map_lookup(mapl, srcip);

bpf_map_update(map2, &h proto,

)s

1);

4

eBPF as the DSL for host-based NFs

4. Clear definition of data structures (and their algorithm)

5. Explicit separation between stateless and stateful operations
* Better performance prediction and semantic verification

Performance Contracts for Software Network Functions
Performance Interfaces for Network Functions

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iver, Katerina Argyraki, George Candea
Katerina Argyraki, and George Candea EPFL, Switzeripnd

EPFL, Switzerland

First splitting between k/u

* Automatic decomposition of eBPF programs between kernel and
userspace [1] to achieve:
* Expressiveness
* Performance

K Query/s Mbps

2250 - 4000
2000 - L 1027] © —‘7
g R iy il

L 3000 -
1500 - 634 2754
1250 - b4 2500 - l
1000 - 2000 -

750 - o — :
BMC Split-BMC BMC Split-BMC
(kernel) (k/u) (kernel) (k/u)

[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the 17th
International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).

Step: the split program

* Automatic decomposition of eBPF programs between kernel and
userspace [1] to achieve:

* Expressiveness
* Performance

K Query/Sec Mbps
2250 A 4000
—— 2086 T

2000 - ,_—L| 1927 © —|_

—L_ 1796 ‘T T 3500
1750 A | T 3204
1500 3000 -

g 2500 203 L o J—
1250 A 1
1000 - 2000 -
750 - o A1
BMC Split-BMC Split-BMC BMC Split-BMC Split-BMC

(kernel) (k/u) (opt) (kernel) (k/u) (opt)

[1] Shahinfar, F., Miano, S., Sanaee, A., Siracusano, G., Bifulco, R., & Antichi, G. (2021, December). The case for network functions decomposition. In Proceedings of the
17th International Conference on emerging Networking EXperiments and Technologies (pp. 475-476).

Entire Network Stack

the performance of data places depend on runtime conditions
 Why don’t we dynamically optimize the generated programs?
* Across all the layers in the stack?

User-Space

[E

>

JIT Compiler

ME

Kernel-Space

\

Q{}

)

A

[1] JITNIC — eBPF and P4: Better Together — Nate Foster, Cornell (https://youtu.be/CFjZflJ1NaU)
[2] Miano, Sebastiano, et al. "Domain specific run time optimization for software data planes." Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 2022.

Hardware

U .
\J

o CPU\\

eBPF
Engine

N o e e e e -

),

https://youtu.be/CFjZfIJ1NaU

j

-

1. How can we guarantee correctness when the program is split = 9
between multiple parts? (e.g., hardware pipeline and software -
pipeline) =

2. How can we handle the hardware/kernel heterogeneity?

e Different NICs have different accelerators and different hardware ©
architecture.

3. How to make use of available hardware accelerators?

* Extract portion of code that can be “accelerated”
3

