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Recent Work

1. Mobile networking systems design
" Nervion cloud-native RAN emulator [MobiCom’21] =» Jon’s talk
* WhiteHaul white space spectrum aggregation system [MobiSys’20)]

2. Data-driven mobile network automation and optimization

" Anomaly detection and troubleshooting
o Automated jammer detection with JADE [INFOCOM22] =» Caner’s talk
o Network slice performance monitoring [TINSM’20]

* Energy efficient virtualized RANs [INFOCOM’21]

" Spectrum sharing
o Learning driven spectrum sharing in neutral-host small cells [J[SAC19]
o Communication-free inter-operator interference management [TCCN’19]

3. :

Mobile network data generation and analysis

= City-scale traffic snapshot generation with CartaGenie [PerCom’22]
= City-scale spatiotemporal traffic synthesis with SpectraGAN [CoNEXT 21|
\_ " National scale mobile service usage diversity analysis [WWW’19] Y,




Barriers to Accessing Real-World Network Data

* Operators / service provider concerns about:
" revealing commercially sensitive info

" compromising subscriber privacy

* Result: Only few have access to data (through restrictive NDAs) =»
Limits innovation and reproducibility

* Measurement data collection 1s costly and time-consuming



Synthetic Data Generation as a Remedy

* Leverage access to limited amount of real data for designing models that
can then generate unlimited amount of “like-real” data
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Mobile Network Traffic Data

Real Data

* Lots of applications within networking:
" Resource management
" Mobile network infrastructure planning
" Network energy efficiency optimization

" Network monitoring
| |

* And beyond:
» Urban sensing & computing
" Inference of commuting patterns &
segregation
" Monitoring demographic patterns
" Detection of land use & its dynamics

* Transportation engineering, urban
planning, road traftic surveillance
| |




A Key Insight: mobile

traffic data 1s correlated with

publicly available “context”
info

... but in a complex, non-deterministic
manner
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— something deep generative models
can capture




So: Learn p(mobile traffic data | public information)

cen U.Siﬂg deep generative models.
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Another Key Insight

Frequency analysis of the mobile traffic
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. Conditioned on the context information ¢,
SpeCtraGAN y SpectraGAN generates the significant frequency
Model DeSlgn components ¥ and residual time series X' separately

- The context input is encoded into a hidden
representation h® by the context encoder

- Both frequency and time generators take this
representation h® as well as a noise vector Z

- The frequency generator outputs ¥

- The generated frequency components y
converted back to the time domain as x*

- The time generator outputs x’

- The overall output is the sum of **and x’




. SpectraGAN uses adversarial training for learning the
SPECtraGAN- conditional distributions to model, i.e. using
Tralnlng BISSHRIRNGIONS to distinguish real and generated data

- Onediscriminator for data in frequency domain 2 y

- Onediscriminator for data in time domain * X

- The context input is encoded into a hidden
representation b* by the context encoder

- Both discriminators takes a form of real or
synthetic data and this hidden representation

- Extra L1 loss to improve training

- Loss function is designed to encourage the
spectrum generator to attain significant
components




Evaluation: Datasets, Metrics & Baselines

Datasets of real mobile traffic from two major European countries

- Country 1: CITY A-CITY | (9 cities)
- Country 2: CITY 1-CITY 4 (4 cities)
- 27 publicly available context attributes

Primary Roads Traffic Signals Industrial High Dense Cont. Urban

J i

Metrics for different aspects of the data

- Marginal: Total variation for marginals (M-TV)

- Spatial: SSIM on time-averaged data (SSIM)

- Temporal: Auto-correlation differences (AC-L1)

- Spatiotemporal: train-synthetic-test-real (TSTR), Fréchet
video distance (FVD)

Baselines to benchmark the generation quality

- FDaS [1]: models the marginal

- Pix2Pix [2]: image translation

- DoppelGANger [3]: time-series GAN

- Conv3D+LSTM [4]: spatio-temporal GAN

[1] P. Di Francesco, F. Malandrino, and L. A. DaSilva. 2018. Assembling and Using a Cellular
Dataset for Mobile Network Analysis and Planning. IEEE Transactions on Big Data 4, 4 (2018),
614-620.

[2] P. Isola et al. 2017. Image-to-image translation with conditional adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1125-
1134.

[3] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar. 2020. Using GANs for Sharing Networked Time
Series Data: Challenges, Initial Promise, and Open Questions. In Proceedings of the ACM Internet

Measurement Conference. 464-483.

[4] D. Saxena and J. Cao. 2019. D-GAN: Deep generative adversarial nets for spatio-temporal
prediction. arXiv preprint arXiv:1907.08556 (2019).



Results: Quantitative Generation Quality

Average testing performance in Country 1

Average testing performance in Country 2

Method M-TV ] | SSIMT | AC-L; | | TSTRT | FVD |
SPECTRAGAN 0.0362 0.787 46.8 0.893 205
P1x2P1x 0.0522 0.800 34.4 0.557 214
DoprPELGANGER 0.0498 0.744 54.8 0.890 247
Conv{3D+LSTM} 0.0460 0.750 60.2 0.895 281
DATA 0.00359 0.999 25.2 0.903 128

Method M-TV | | SSIMT | AC-L; | | TSTRT
SPECTRAGAN 0.0607 0.686 34.8 0.977
"7 Px2Pix | 0121 | 0564 | 117 | 0653
DoPPELGANGER 0.0521 0.472 40.9 0.964
Conv{3D+LSTM} | 0.0514 0.613 99.5 0.946

DATA 0.0076 0.996 22.8 0.978

SpectraGAN is the best model considering all metrics.
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Use Cases:
Data-Driven Micro
Base Station Sleeping

Synthetic data allows researchers to evaluate
performance of a new data-driven solution for
network management and beyond

Dynamically switch base stations on/off based on traffic
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The substantial operating expense due to energy
consumption at base stations (BSs) = a number of
solutions for saving power in the RAN, e.g. [1]
Heterogeneous RAN deployment:

Micro BS: each pixel (i.e. 1x1 grid cells)

Macro BS: an umbrella coverage of 5x5 grid cells
Sleeping reduces power consumption by 47-62%

Inline with what can be achieved by real data

Il always active
Ml sleeping - real traffic
BN sleeping - SPECTRAGAN
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[1] G. vallero, D. Renga, M. Meo, and M. A. Marsan. 2019. Greener RAN Operation

Through

3(2019),

Machine Learning. IEEE Transactions on Network and Service Management 16,
896-908.



Use Cases: Dynamic Human Presence Mapping

Tracking of population density in real-time using mobile tratfic data

- Multivariate regression model [1] to track population p,(t) at grid cell 1
and time t from network traffic x.(t)

1 ] é | i ¥ '
pi(t) = eklﬂz(t)'szxi(t)kMz(t)+k4 : |
Estimated according to [1] 7
- Comparing the outputs the model 3 | . . 1
~

e Peak signal-to-noise ratio (PSNR) > 25
= Values of PSNR > 20 are acceptable [2]  (a) 6:00 (b)8:00  (c)12:00  (d)16:00 () 22:00

Dynamic people presence estimated at five different times of the
day for a sample city

[1]1 G. Khodabandelou et al. 2019. Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata. IEEE Transactions on Mobile Computing 18,

9 (2019), 2034-2047. https://doi.org/10.1109/TMC.2018.2871156

[2] N. Thomos, N. V. Boulgouris, and M. G. Strintzis. 2006. Optimized transmission of JPEG2000 streams over wireless channels. IEEE Transactions on Image Processing
15, 1 (2006), 54-67. https://doi.org/10.1109/TIP.2005.860338



https://doi.org/10.1109/TMC.2018.2871156

Summary

* Readily available context + generative models = solution to data accessibility

* Domain specific insights necessary for high-fidelity and generalizable data
synthesis

* Developed a suite of deep generative models for mobile traffic and beyond:
" SpectraGAN [CoNEXT"21], CartaGente [PerCom’22], ...

* Synthesized mobile traffic data for multiple cities publicly released via
https://github.com/netsys-edinburgh/

* Several further challenges to investigate on:
" Mobile network data generation

" Foundational research in generative modelling, informed by our domain specific data
synthesis experience


https://github.com/netsys-edinburgh/

