
With Great Power Comes Great Responsibility:
Exploring Administration in the Decentralized
Web

Ishaku Anaobi

1

Decentralized Web

2

• Imagine breaking Twitter
into multiple parts

• Each part operates
as a mini twitter

• Dweb has multiple
implementations e.g
Pleroma

Decentralized Setting

3

• Independent servers
called instances

QMUL

Telefonica

• Segmented communities

• Users register on their community
servers and exchange information

• Federation

UCL

• Fediverse

Why is this cool?

• Offers full control

• Freedom

• However, content moderation could be an issue

4

Who manages these instances?

• Specialized users responsible for the day-to-day administrative tasks on the
instances called Administrators

5

• Usually, volunteers

• By default, the creator of an instance will take on the role of the administrator

• Can delegate such responsibilities to multiple others.

How do admins moderate?

6

• Implementations rely on federation policies

• Admins create rules and apply ”actions”

• Mostly applied instance-wide

• Moderation is mostly manual

Can admins cope?

7

We conjecture that
admins as volunteers
could possibly get
overwhelmed

Dataset

Date instances users posts policies

16-Dec-2020 – 19-Oct-2021 1,740 133.8k 29m 49

8

What policies do admins apply?

9

Default policies

SimplePolicy with
wide range of
actions

18.2% of
instances run
only on the

default policies
alone

Do admins seek help?

10Post growth vs. Administrator growth

The number of
administrators do

not grow
proportionately

with the number
of posts

Only 6.9% of
instances recruit

additional
admins

How swift are admins?

11Number of days from federation to moderation

Admins take an
average of 81.2 days to

apply any form of
policy against other

instances

Even for well-known
highly controversial
instances
(anime.website:150d
ays)

What do we propose?

12

WatchGen

A tool to recommend to admins
a “watchlist” of other instances that
may require federated moderation

Developing WatchGen (Feature Selection)

• We extract multiple features from each instance (e.g number of users and posts).

• We experimented with a total of 38 features

13

• We distil this down to the 16 most determinant features

Model Training

We train a number of machine learning models

(i) Logistic Regression

(ii) Multilayer Perceptron

(iii) Random Forest

(iv) Gradient Boosted Trees

14

Experiment 1 (global)

15
F1 scores for our 4 models

Best performing model
is Logistic
Regression with 8
months of training data
(f1=0.78)

Entire pool of data
predict if a given
instance will be

subject to any policy

What features are most Important?

16
Feature importance for Logistic Regression

Top 3 features are all
related to the posts
on an instance

Experiment 2 (Local)

17
Per-instance performance metrics for Logistic
Regression

Avg f1-score of 0.52.
23.9% of instances gain
above 0.6

Performance is
impacted by size

Questions?

18

