
Nitinder Mohan
mohan@in.tum.de

A Hierarchical Orchestrator for Edge Computing

nitinder_mohan

Problems with Edge Orchestration

Edge infrastructure can be widely
different than cloud

o Hardware can be specialized,
heterogeneous and
constrained

Problems with Edge Orchestration

Edge infrastructure can be widely
different than cloud

o Hardware can be specialized,
heterogeneous and
constrained

o Network can be limited with
fluctuations

The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jörg Ott, and Jussi Kangasharju. 2021.
Cloudy with a chance of short RTTs: analyzing cloud connectivity in the internet. IMC 2021

Problems with Edge Orchestration

Many orchestration already exist …

But most are not designed for edge

Sonia Klärmann. Evaluating the Suitability of Kubernetes for Edge Computing Infrastructure., M.Sc. Thesis, TUM

Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Kubernetes for the Edge. EdgeSys '21.

Scalable delegated service
scheduling and placement

Modular and extensible design

Hierarchical
decentralized
management

Semantic overlay networking

Federated
edge

infrastructure
support

Inter-service interactions over
private network domains

Lightweight edge
device specific

implementation

Edge-oriented
SLA design

… and more

Scalable delegated service
scheduling and placement

Modular and extensible design

Hierarchical
decentralized
management

Semantic overlay networking

Federated
edge

infrastructure
support

Inter-service interactions over
private network domains

Lightweight edge
device specific

implementation

Edge-oriented
SLA design

… and more

Oakestra: Overview

• Different operators can set up different
clusters for a federated infrastructure

• Each cluster has its own orchestrator

• Clusters can be private networks

Root Orchestrator Coarse-Grained
management over clusters

Cluster Orchestrator Fine-Grained
management over compute resources

Edge servers organized as different clusters

Oakestra: Composers

• Each worker has distinct capability. e.g. CPU,
GPU, MEM, etc.

• Can have different architectures, x86, ARM

Node Engine Deploying, monitoring,
managing services + reporting to orch.

NetManager Inter-service communication
across different network domains

Sends frequent resource and service usage information to cluster orchestrator

Oakestra: Composers

• Manages all cluster workers using MQTT
communication channel

Cluster Manager Monitors and orchestrates
workers (incl. failures)

Service Manager Monitors and orchestrates
services (deployment, termination, failure)

ClusterScheduler Finds optimal worker for
deploying services. Algorithms are plugins

Aggregates resource availability of the cluster and sends it to root at lower frequency

Oakestra: Composers

• “Centralized” control plane that operates at
cluster-level [think “master-of-masters”]

• Similar functional components as Cluster
Orchestrator

Users can
interact
via WebUI
or CLI

Oakestra: Scheduling

Follows a delegated scheduling process

Oakestra: Scheduling

Step 1: Developer submits application and
SLA constraints via web/cli

Follows a delegated scheduling process

Oakestra: Scheduling

Step 1: Developer submits application and
SLA constraints via web/cli

Step 2: Root scheduler calculates “fitting”
clusters based on aggregated information

Follows a delegated scheduling process

Oakestra: Scheduling

Step 1: Developer submits application and
SLA constraints via web/cli

Step 2: Root scheduler calculates “fitting”
clusters based on aggregated information

Follows a delegated scheduling process

Step 3: Cluster scheduler finds the “optimal” placement
for the service within the cluster resources

> Oakestra supports two scheduler plugins: 1) best-fit
and 2) latency and geolocation-based

Oakestra: Scheduling

Step 1: Developer submits application and
SLA constraints via web/cli

Step 2: Root scheduler calculates “fitting”
clusters based on aggregated information

Follows a delegated scheduling process

Step 3: Cluster scheduler finds the “optimal” placement
for the service within the cluster resources

Step 4: Worker nodes accepts/rejects scheduling
request and deploys the service

Oakestra in Action

- 6x reduction in Master and 11x reduction in worker CPU usage

- 18% improvement in Master and 33% in worker memory

- 2x reduction in control traffic compared to K3s

Constrained System Load

Oakestra in Action

- 10x better than microk8s with scaling deployment

- 20% improvement in scalability than closest
competitor: K3s

- Performs significantly better in high delay and
lossy networks

Deployment Time & Scaling

Team Credits:

• Giovanni Bartolomeo (PhD)

• Mehdi Yosofie (MSc)

• Oliver Haluszczynsci (MSc)

• Simon Bäurle (MSc)

• Maximilian Eder (MSc)

• Patrick Sabanic (MSc)

• Sonia Klärmann (MSc)

• Ralf Baun (MSc)

• Daniel Mair (BSc)

• Maria Vienalas (BSc)

and Prof. Jörg Ott

Code White paper

mohan@in.tum.de

If you are attending SIGCOMM, check our live demo!

Backup

A Spectrum of Edge Computing

Kubernetes at the edge?

• Compute resources are “Workers”

• Each worker can host multiple
“pods” (group of containers)

• Workers are managed by control
plane or ”master

• Requires network liveness and
strong consistency guarantees

A relatively flat orchestration
architecture

https://kubernetes.io/docs/concepts/overview/components/

What’s the Problem with Orchestration?
Kubernetes Performance Issues

Does not perform well in networks with long and invariable delays!

Oakestra: Tenets

1. Support for Heterogeneity
o in capabilities, e.g. CPU, GPU, TPU, …

o in architectures, e.g. ARM, x86, …

o in access, e.g. WiFi, ethernet, cellular, …

o in virtualization support, e.g. containers,
microVM, unikernels, …

2. Scalable and flexible execution

3. Support federated infrastructures
involving multiple operators at different
bands of the edge spectrum

Oakestra: Data Plane Networking
Designed to support the heterogeneous network environment at the edge

Oakestra: Data Plane Networking

1. Semantic Service Addressing keeps
track of multiple service instances
deployed on different resource

Designed to support the heterogeneous network environment at the edge

http://appname.appns.servicename.

servicens.instancenumber.

routing_policy.local:port/api

Oakestra: Data Plane Networking

1. Semantic Service Addressing keeps
track of multiple service instances
deployed on different resource

2. Dynamic routing policies support load
balancing at the edge

Designed to support the heterogeneous network environment at the edge

1. Round Robin

2. Closest instance deployed

3. Specific instances

Oakestra: Data Plane Networking

1. Semantic Service Addressing keeps
track of multiple service instances
deployed on different resource

2. Dynamic routing policies support load
balancing at the edge

3. Worker-supported L4 tunneling allows
services to interact across network
domains (and cluster boundaries)

Designed to support the heterogeneous network environment at the edge

EdgeIO Features

Flexible Networking over Operational Boundaries

http://appname.appns.servicename.servicens.

instancenumber.policy.local:port/api

• Run distributed applications on nodes
behind different organization networks

• Compute nodes need not be in same (or
public) network to participate

• Flexible networking that supports
application migration, replication,
termination and failures

• Load-balancing between multiple
application instances

Oakestra: Implementation

• Implemented in approximately 11000 LOC

• Main implementation in Python and networking component in GoLang

• Easily deployable as Linux containers for both x86 and ARM achitectures

• Currently supports Linux and Docker container-ized services (support for Unikraft-
based unikernels in progress, more virtualization support to be added in future)

Preliminary Evaluation

Emulation of diversity and
connectivity of edge infrastructures

was most important to us.

HPI Infrastructure Setup:

1. 17 VMs of size S

2. 17 VMs of size M

3. 3 VMs of size L

4. 4 VMs of size XL

Root Manager

Cluster Manager

Worker 1 Worker 2 Worker n

Oakestra in Action

- 10 – 50% improvement over the state-of-the-art

- Similar bandwidth usage while tunneling traffic

Data-Plane Communication

Oakestra: Live Video Analytics

Video
Source

1

+

Video
Aggregation

2

Object
Detection

3

Object
Tracking

4

TrackingDetectionFPS

Upto 10% improvement in application performance

Simon Bäurle and Nitinder Mohan. 2022. ComB: a flexible, application-oriented benchmark for edge computing. In 5th International Workshop on Edge Systems, Analytics and Networking (EdgeSys '22).

Kubernetes at the Edge?

Too much overhead for
constrained nodes! Which worsens with

worsening
environment

Sonia Klärmann. Evaluating the Suitability of Kubernetes for Edge Computing Infrastructure., M.Sc. Thesis, TUM

(Inter and Intra Cluster) Communication

Where do we go from here?

• Modular service scheduler for EdgeIO

