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Introduction

Internet from space is becoming a viable reality

SpaceX, Amazon, Telesat are/will be deploying low earth orbit

(LEO) satellite constellations
« ...competing with/complementing terrestrial networks
1000s of satellites in multiple orbital shells and planes per shell

Inter-satellite and ground station to satellite links
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LLEO Satellite Network

Characteristics

« Aggregate bandwidth in the order of hundreds of Tbps
comparable to today’s aggregate fibre capacity

e Sub-10ms round-trip time between Earth and first-hop

satellite

« Low end-to-end latency - can be smaller than best theoretical

fibre path can support
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Network Dynamics
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Non-Congestive Latency Variation
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Loss- and Delay-based Data

Transport
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Kuiper constellation - shell K1, 1156 satellites, 630km altitude, 34 orbital planes,

34 satellites per plane, 51.90 inclination, 10Mbps link speed, 100 packet buffers
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Novel Data Transport built on top of TCP

Leverages In-Network Telemetry (INT) to gather per-hop congestion

information

« Minimize buffer occupancy and latencies for end hosts
- Maximize application throughput and network utilization

« Swiftly respond to network hotspots
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Congestion Control

« The sender determines the amount of congestion at each
hop by calculating the number of in-flight bytes for each
outgoing link
« Additive Increase — Proportional to the number of flows sharing

the bottleneck, with the base value being 5% of the BDP

e Multiplicative Decrease — maintains a target utilization (0.95%)

to ensure low buffer occupancy and full link utilization.
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Latency Change Experiment
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Latency Change Experiment
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Non-Congestive Loss
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Current Work

« Large-scale experimentation using the developed LEO satellite
network model in OMNeT++
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LEO Satellite Model — OMNeT++
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« Explore a multipath for OrbTCP
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