

Data Transport for the Orbiting Internet

Aiden Valentine School of Engineering and Informatics University of Sussex

Introduction

- *Internet from space* is becoming a viable reality
- SpaceX, Amazon, Telesat are/will be deploying low earth orbit (LEO) satellite constellations
 - ... competing with/complementing terrestrial networks
- 1000s of satellites in multiple orbital shells and planes per shell
- Inter-satellite and ground station to satellite links

LEO Satellite Network Characteristics

- Aggregate bandwidth in the order of hundreds of Tbps
 - comparable to today's aggregate fibre capacity
- Sub-10ms round-trip time between Earth and first-hop satellite
- Low end-to-end latency can be smaller than best theoretical fibre path can support

Network Dynamics

Non-Congestive Latency Variation

Loss- and Delay-based Data Transport

Kuiper constellation - shell K1, 1156 satellites, 630km altitude, 34 orbital planes, 34 satellites per plane, 51.90 inclination, 10Mbps link speed, 100 packet buffers

OrbTCP

- Novel Data Transport built on top of TCP
- Leverages In-Network Telemetry (INT) to gather per-hop congestion information
 - Minimize buffer occupancy and latencies for end hosts
 - Maximize application throughput and network utilization
 - Swiftly respond to network hotspots

INT Overiew

Congestion Control

- The sender determines the amount of congestion at each hop by calculating the number of in-flight bytes for each outgoing link
 - Additive Increase Proportional to the number of flows sharing the bottleneck, with the base value being 5% of the BDP
 - Multiplicative Decrease maintains a target utilization (0.95%) to ensure low buffer occupancy and full link utilization.

Latency Change Experiment

Latency Change Experiment

Non-Congestive Loss

Current Work

- Large-scale experimentation using the developed LEO satellite network model in OMNeT++
- Explore a multipath for OrbTCP

LEO Satellite Model – OMNeT++

