
Towards Latency-Aware Linux
Scheduling for Serverless Workloads

Al-Amjad Tawfiq Isstaif, Prof Richard Mortier

Systems Research Group,
Department of Computer Science & Technology,

University of Cambridge

Motivation

• Originally interested in local-first self-
scaling unikernels

• Running on Kubernetes requires rapid
adjustment of Linux CPU shares in
response to load spikes

• However, we observed that
• At low utilisation, a small CPU share

doesn't matter because of work-
conservation

• At high utilisation, the system suffers
performance degradation and adjusting
CPU shares did not help

• Problem? How the Linux Completely
Fair Scheduler (CFS) treats cgroups

https://arxiv.org/abs/1902.09636

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 2

al-Amjad Tawfiq Isstaif

Completely Fair Scheduling with cgroups

• CFS ensures each runnable task receives a minimum timeslice (~4ms), growing
the scheduling period as needed (i.e., to 4N ms for N tasks)

• Consider high-density serverless workloads
• 102 – 103 functions per node

• Concurrent requests per function

• With group scheduling, each cgroup
is scheduled as a single whole to
prevent a cgroup gaming the system
by creating many tasks

• Results in many context switches to
achieve CFS fairness across task
hierarchy

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 3

al-Amjad Tawfiq Isstaif

Experimental workload
• Azure Function Invocation trace

• 119 functions over two weeks

• K8s limit of 110 pods/node

• Use top 100 functions, leaving
10 pods for admin functions

• Then, per 5 minute bucket,
• Sort into 10 demand bands

ordered by request arrival rate

• group-high mixes highest intensity
band for each bucket

• group-low mixes lowest 9 intensity
bands for each bucket

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier

gr
o

u
p

-h
ig

hgroup-low

4

al-Amjad Tawfiq Isstaif

CFS–Least Loaded First (CFS–LLF)

• Serverless workloads are skewed:
• most compute happens in a few functions, while

• most functions are short-lived and mostly idle

• Reduce context switch overheads by
allowing some of the tail functions to
complete and get out of the way

• Adjust the CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
• Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

• Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func_sandbox
property

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 5

al-Amjad Tawfiq Isstaif

CFS–Least Loaded First (CFS–LLF)

• Serverless workloads are skewed:
• most compute happens in a few functions, while

• most functions are short-lived and mostly idle

• Reduce context switch overheads by
allowing some of the tail functions to
complete and get out of the way

• Adjust the CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
• Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

• Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func_sandbox
property

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 6

al-Amjad Tawfiq Isstaif

Result? CFS–LLF mitigates impact of overload

• Allows the tail of least-loaded functions to complete and get out of
the way

• Allows the (relatively) small number of most-loaded functions to also
make useful progress

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 7

al-Amjad Tawfiq Isstaif

Conclusions

• CFS can be “good enough” under low CPU utilisation

• CFS-LLF mitigates performance degradation as load increases in high
density serverless setups
• Relaxing fairness in favour of short-lived functions (useful, fair, & safe)
• Reduces stress on CFS run queues

• CFS-LLF is compatible with K8s and portable to other frameworks
• Requires no coordination with control planes, requires no workload training

• Next
• Extending evaluation to diverse serverless benchmarks
• Hotspot functions can be rapidly identified using the kernel load metric: can this

allow them to be rapidly auto scaled to other cluster nodes?

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 8

al-Amjad Tawfiq Isstaif

Backup slides

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 9

al-Amjad Tawfiq Isstaif

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 10

al-Amjad Tawfiq Isstaif

Contention under serverless workloads

As utilisation increases, fewer requests meet their latency target

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 11

al-Amjad Tawfiq Isstaif

Attainment of latency targets

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 12

al-Amjad Tawfiq Isstaif

Overload management

• CFS-LLF, a kernel scheduler that
protects the performance of the
long tail of least loaded
functions with no prior training or
knowledge of workload, and no
coordination with Kubernetes
control plane.

• Contention-aware autoscaling, a
Linux host agent that detects when
a cluster node is overloaded and
scales the resources of hotspot
functions without escalating the
issue to other cluster nodes

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 13

al-Amjad Tawfiq Isstaif

Evaluation

• CDFs of achieved latency per function under highest-contention
scenario

SESAME'23, "Towards Latency-Aware Linux Scheduling for Serverless Workloads", Isstaif & Mortier 14

al-Amjad Tawfiq Isstaif

	Slide 1: Towards Latency-Aware Linux Scheduling for Serverless Workloads
	Slide 2: Motivation
	Slide 3: Completely Fair Scheduling with cgroups
	Slide 4: Experimental workload
	Slide 5: CFS–Least Loaded First (CFS–LLF)
	Slide 6: CFS–Least Loaded First (CFS–LLF)
	Slide 7: Result? CFS–LLF mitigates impact of overload
	Slide 8: Conclusions
	Slide 9: Backup slides
	Slide 10
	Slide 11: Contention under serverless workloads
	Slide 12: Attainment of latency targets
	Slide 13: Overload management
	Slide 14: Evaluation

