B UNIVERSITY OF
P CAMBRIDGE

WSS
Q. [

Towards Latency-Aware Linux
Scheduling for Serverless Workloads

Al-Amjad Tawfiq Isstaif, Prof Richard Mortier

Systems Research Group,
Department of Computer Science & Technology,
University of Cambridge



Motivation

OriFinaIIy interested in local-first self-
scaling unikernels

Running on Kubernetes requires rapid
adjustment of Linux CPU shares in
response to load spikes

However, we observed that

* At low utilisation, a small CPU share
doesn't matter because of work-
conservation[ OK! ]

* At high utilisation, the system suffers
performance degradation and adjusting
CPU shares did not help [ BAD! ]

Problem? How the Linux Completely
Fair Scheduler (CFS) treats cgroups
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Completely Fair Scheduling with cgroups

* CFS ensures each runnable task receives a minimum timeslice (¥4ms), growing
the scheduling period as needed (i.e., to 4N ms for N tasks)

« Consider high-density serverless workloads

« 102 — 103 functions per node
« Concurrent requests per function

* With group scheduling, each cgroup
is scheduled as a single whole to
prevent a cgroup gaming the system
by creating many tasks

‘ -------- ]

Root
cgroup

* Results in many context switches to
achieve CFS fairness across task
hierarchy
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Experimental workload

Distribution of the total number of requests in peak demand

= request_count e Azure Function Invocation trace
pup-lqw
* Use top 100 functions, leaving
Deded I ||Ill|m HHH\H 10 pods for admin functions
OO0 6 0O 6 0 006 0 O .Thep, per 5 minute bucket,

— group-high e Sort into 10 demand bands
o rouprlow ordered by request arrival rate

* group-high mixes highest intensity

100: band for each bucket
50 * group-low mixes lowest 9 intensity

bands for each bucket

e 119 functions over two weeks
* K8s limit of 110 pods/node
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CFS—Least Loaded First (CFS—LLF)

» Serverless workloads are skewed:
* most compute happens in a few functions, while
* most functions are short-lived and mostlyidle ,-------- .

I queue-proxy !
1

. i [ gse N

* Reduce context switch overheads by | [omra )l |
a”OWing Some Of the tail functions to s user-container k8s-burstable k8s.slice
complete and get out of the way Sl N

e Adjustthe CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
e Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

* Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func _sandbox
property
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CFS—Least Loaded First (CFS—LLF)

» Serverless workloads are skewed:
* most compute happens in a few functions, while
* most functions are short-lived and mostlyidle --------,

I queue-proxy !
1

. ! ml' ! g I'
* Reduce context switch overheads by | Cosra) | | e ral |

allowing some of the tail functions to
complete and get out of the way ﬂ TRy

e Adjustthe CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
e Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

* Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func _sandbox
property
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Result? CFS—LLF mitigates impact of overload
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* Allows the tail of least-loaded functions to complete and get out of
the way

* Allows the (relatively) small number of most-loaded functions to also
make useful progress
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Conclusions

* CFS can be “good enough” under low CPU utilisation

* CFS-LLF mitigates performance degradation as load increases in high
density serverless setups
» Relaxing fairness in favour of short-lived functions (useful, fair, & safe)
* Reduces stress on CFS run queues

* CFS-LLF is compatible with K8s and portable to other frameworks
* Requires no coordination with control planes, requires no workload training

* Next

* Extending evaluation to diverse serverless benchmarks

* Hotspot functions can be rapidly identified using the kernel load metric: can this
allow them to be rapidly auto scaled to other cluster nodes?
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Backup slides
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Figure 10. Arrival rates of the top segment found in the 10
demand bands from Figure 3
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Contention under serverless workloads
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(b) Absolute number of requests meeting latency targets

As utilisation increases, fewer requests meet their latency target
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Attainment of latency targets
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(a) Group high
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(b) Group low
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Overload management T —
A N
* CFS-LLF, a kernel scheduler that / Clustr node ST
rotects the performance of the [ -
ong tail of least loaded et | o | efor
functions with no prior training or RR | S5 | ipe
knowledge of workload, and no - Linun

coordination with Kubernetes
control plane.

 Contention-aware autoscaling, a
Linux host agent that detects when
a cluster node is overloaded and
scales the resources of hotspot
functions without escalating the
issue to other cluster nodes

Right
metrics
(kernel

Linux

load, and
slowdown)

Linux
CFS Scheduler

response to

overload
(Generality &
Efficiency)

Linux
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Evaluation

* CDFs of achieved latency per function under highest-contention
scenario

Static LLF
(sched _rr)

CDF?W' TR CDF for group-low (90 funcs)
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