B UNIVERSITY OF
P CAMBRIDGE

WSS
Q. [

Towards Latency-Aware Linux
Scheduling for Serverless Workloads

Al-Amjad Tawfiq Isstaif, Prof Richard Mortier

Systems Research Group,
Department of Computer Science & Technology,
University of Cambridge

Motivation

OriFinaIIy interested in local-first self-
scaling unikernels

Running on Kubernetes requires rapid
adjustment of Linux CPU shares in
response to load spikes

However, we observed that

* At low utilisation, a small CPU share
doesn't matter because of work-
conservation[OK!]

* At high utilisation, the system suffers
performance degradation and adjusting
CPU shares did not help [BAD!]

Problem? How the Linux Completely
Fair Scheduler (CFS) treats cgroups

Fractal: Automated Application Scaling

Carlos Oviedo
University of Nottingham
carlos.oviedo@nottingham.ac.uk

Masoud Koleini
University of Nottingham
masoud.koleini@nottingham.ac.uk

Derek McAuley
University of Nottingham
derek.mcauley@nottingham.ac.uk

Charalampos Rotsos
University of Lancaster
charalampos.rotsos@lancaster.ac.uk

Anil Madhavapeddy
University of Cambridge
anil.madhavapeddy@cl.cam.ac.uk

Thomas Gazagnaire
University of Cambridge
thomas.gazagnaire@cl.cam.ac.uk

Richard Mortier®
University of Cambridge
richard.mortier@cl.cam.ac.uk

Magnus Skejgstad
University of Cambridge
magnus.skejgstad@cl.cam.ac.uk

https://arxiv.org/abs/1902.09636

domO domO

Jitsu Jitsu

[e

Xen Hypervisor

Irmin

Open vSwitch

al-Amjad Tawfiq Isstaif

B UNIVERSITY OF
P CAMBRIDGE

eSS
Q) &P

Completely Fair Scheduling with cgroups

* CFS ensures each runnable task receives a minimum timeslice (¥4ms), growing
the scheduling period as needed (i.e., to 4N ms for N tasks)

« Consider high-density serverless workloads

« 102 — 103 functions per node
« Concurrent requests per function

* With group scheduling, each cgroup
is scheduled as a single whole to
prevent a cgroup gaming the system
by creating many tasks

‘ --------]

Root
cgroup

* Results in many context switches to
achieve CFS fairness across task
hierarchy

al-Amjad Tawfiq Isstaif

2.5 UNIVERSITY OF

lllll “‘I‘A‘

«% CAMBRIDGE

Experimental workload

Distribution of the total number of requests in peak demand

= request_count e Azure Function Invocation trace
pup-lqw
* Use top 100 functions, leaving
Deded I ||Ill|m HHH\H 10 pods for admin functions
OO0 6 0O 6 0 006 0 O .Thep, per 5 minute bucket,

— group-high e Sort into 10 demand bands
o rouprlow ordered by request arrival rate

* group-high mixes highest intensity

100: band for each bucket
50 * group-low mixes lowest 9 intensity

bands for each bucket

e 119 functions over two weeks
* K8s limit of 110 pods/node

Number of requests
P
N

requests per second
[
ul
o

0 50 100 150 200 250 300
time (seconds)

al-Amjad Tawfiq Isstaif

B8 UNIVERSITY OF
€% CAMBRIDGE

CFS—Least Loaded First (CFS—LLF)

» Serverless workloads are skewed:
* most compute happens in a few functions, while
* most functions are short-lived and mostlyidle ,-------- .

I queue-proxy !
1

. i [gse N

* Reduce context switch overheads by | [omra)l |
a”OWing Some Of the tail functions to s user-container k8s-burstable k8s.slice
complete and get out of the way Sl N

e Adjustthe CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
e Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

* Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func _sandbox
property

al-Amjad Tawfiq Isstaif

Al UNIVERSITY OF
4P CAMBRIDGE

CFS—Least Loaded First (CFS—LLF)

» Serverless workloads are skewed:
* most compute happens in a few functions, while
* most functions are short-lived and mostlyidle --------,

I queue-proxy !
1

. ! ml' ! g I'
* Reduce context switch overheads by | Cosra) | | e ral |

allowing some of the tail functions to
complete and get out of the way ﬂ TRy

e Adjustthe CFS dynamic priority based the existing per-entity load tracking (PELT)
mechanism rather than on minimum vruntime
e Each task has a dynamic load credit estimated over a ~4 seconds (i.e., youngest tasks first)

* Group tasks (equivalently, cgroups) into function sandboxes via addition of cpu.func _sandbox
property

al-Amjad Tawfiq Isstaif

2.5 UNIVERSITY OF

IIIII “‘I‘A‘

¥ CAMBRIDGE
Result? CFS—LLF mitigates impact of overload

requests (latency target 1000ms) # requests (latency target 2000ms) # requests (latency target 3000ms)
g 125 - 125 - 125 -
E 100 f=======--pgecges=ccscccs—————— 100 + 100 -
-E— 0.75 - 0.75 - 0.75 -
§ 0.50 1 0.50 1 0.50 1
g 0.25 - 0.25 - 0.25 -
. 0.00 - 0.00 -

S R R ¥ AR B R B & = RR S RFB R B R 8 S R RS R BRB & 8

of colocated functions # of colocated functions # of colocated functions
mm CFS mmm CFS-LLF

* Allows the tail of least-loaded functions to complete and get out of
the way

* Allows the (relatively) small number of most-loaded functions to also
make useful progress

al-Amjad Tawfiq Isstaif

2.5 UNIVERSITY OF

AAAAA “‘l‘l‘

Conclusions

* CFS can be “good enough” under low CPU utilisation

* CFS-LLF mitigates performance degradation as load increases in high
density serverless setups
» Relaxing fairness in favour of short-lived functions (useful, fair, & safe)
* Reduces stress on CFS run queues

* CFS-LLF is compatible with K8s and portable to other frameworks
* Requires no coordination with control planes, requires no workload training

* Next

* Extending evaluation to diverse serverless benchmarks

* Hotspot functions can be rapidly identified using the kernel load metric: can this
allow them to be rapidly auto scaled to other cluster nodes?

al-Amjad Tawfiq Isstaif

BB UNIVERSITY OF
¢¥ CAMBRIDGE

Backup slides

al-Amjad Tawfiq Isstaif

IS IS
S Ry U
vt BB

g o 8 o 8o
J% ;

Arrival rate (request/second)
(=] ~N
o w
—)
L e—
-
—
—
— 4
3
.] .
. | d
]
i] J

A
2 5% . P aa aa — i
0
1
o ;] Al Ls L J L L) v
0 S0 100 150 200 250 300
Time (seconds)

Figure 10. Arrival rates of the top segment found in the 10
demand bands from Figure 3

al-Amjad Tawfiq Isstaif

3
i

318 UNIVERSITY OF
¥V CAMBRIDGE

Contention under serverless workloads

1000ms latency target 2000ms latency target 3000ms latency target
1.0 100 1.0 - 100 1.0 - 100
g o8 .80 0.8 L8008 L80 £
c
3 . o
f 0.6 60 0.6 -60 0.6 - 60 §
S04 L40 04 La0 0.4 La0 5
2 z
0.2 F20 0.2 20 0.2 20 O
0.0 0 00 0.0
o o o (= o o o (=] o o o o o o o o o o o (=] o o o o (=] o o o o o
- ~ ™ < w o ~ =] = g - ~ ™ < w (] ~ ©0 o g - ~ ™ < v o ~ @ o s
of colocated functions # of colocated functions # of colocated functions
(a) Percentage of requests meeting latency targets.
1000ms latency target 2000ms latency target 3000ms latency target
100 100 30000 100
_ 20000 25000 B
g 80 80 80 &
= 15000 20000 20000 s
o 6 0 =
8 s 15000 6 60 3
: 40 10000 40 “.°5
= 5000 20 5000 20 20 ©
0 0 0 0 0 0
S 8 8 8 %8 8 R 8 & 8 = R 8 §8 8 8 R 8 & 8 = R R 8 B 8 R 8 8 8
- Ll -
of colocated functions # of colocated functions # of colocated functions

(b) Absolute number of requests meeting latency targets

As utilisation increases, fewer requests meet their latency target

al-Amjad Tawfiq Isstaif

NIVERSITY OF
AMBRIDGE

@)

Attainment of latency targets

% requests (latency target 1000ms) % requests (latency target 2000ms) % requests (latency target 3000ms)
L e 0 fer-se- - M ¥ " 10w MM WX
i« 081 038 1 08 1
0
% 0.6 - 06 06
5 04 04 04
R

0.2 - 0.2 1 0.2 1

0.0 0.0 -
288888288§ 288988288§ 988888288§
of colocated functions # of colocated functions # of colocated functions

(a) Group high
% requests (latency target 1000ms) % requests (latency target 2000ms) % requests (latency target 3000ms)

T I B BT R 10 fpr- T 10 fgr-pr- X

w 08 1 0.8 1 0.8 1
i
3 06 06 0.6
g
s 04 - 04 4 0.4
ES

0.2 1 0.2 { 0.2 1

0.0 - 0.0 - 0.0 -

9 R R @ F 8 R 8 R § S R R &8 B 8 R 8 ® § g R R 8@ R 8 R 8 8 §
of colocated functions # of colocated functions # of colocated functions

mm CFS mmm CFS-LLF

(b) Group low

al-Amjad Tawfiq Isstaif

5 E UNIVERSITY OF

i 1‘31

» CAMBRIDGE

Overload management T —
A N
* CFS-LLF, a kernel scheduler that / Clustr node ST
rotects the performance of the [-
ong tail of least loaded et | o | efor
functions with no prior training or RR | S5 | ipe
knowledge of workload, and no - Linun

coordination with Kubernetes
control plane.

 Contention-aware autoscaling, a
Linux host agent that detects when
a cluster node is overloaded and
scales the resources of hotspot
functions without escalating the
issue to other cluster nodes

Right
metrics
(kernel

Linux

load, and
slowdown)

Linux
CFS Scheduler

response to

overload
(Generality &
Efficiency)

Linux

al-Amjad Tawfiq Isstaif

B UNIVERSITY OF
P CAMBRIDGE

WSS
Q. [

Evaluation

* CDFs of achieved latency per function under highest-contention
scenario

Static LLF
(sched _rr)

CDF?W' TR CDF for group-low (90 funcs)
1.0 — 1.0
08 / Zfs . | // / "

[J are / /

P

0.6 / ‘ \\ 0.6 T /7
ST R
0.2 //Z% \\\ 0.2
0.0

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Latency (ms) Latency (ms)

~__

0.0

al-Amjad Tawfiq Isstaif

	Slide 1: Towards Latency-Aware Linux Scheduling for Serverless Workloads
	Slide 2: Motivation
	Slide 3: Completely Fair Scheduling with cgroups
	Slide 4: Experimental workload
	Slide 5: CFS–Least Loaded First (CFS–LLF)
	Slide 6: CFS–Least Loaded First (CFS–LLF)
	Slide 7: Result? CFS–LLF mitigates impact of overload
	Slide 8: Conclusions
	Slide 9: Backup slides
	Slide 10
	Slide 11: Contention under serverless workloads
	Slide 12: Attainment of latency targets
	Slide 13: Overload management
	Slide 14: Evaluation

