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Can we identify
rich & poor?
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Can we identify
rich & poor
from their
online text?



Nextdoor: within neighbourhood interactions

® Nextdoor




How Nextdoor works?
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Nextdoor data

Attributes USA UK Total
Posts 2,201,051 351,894 2,602,045
Neighborhoods 64,283 3,325 67,608
Cities 5,849 10 5,859
zip code(USA)/LSOA(UK) 30872 2512 33284
[ Comments 17,421,050 | 2,246,814 | 19,667,864
| Neighbors 6,6480,730 | 1,744,948 | 68,225,678

lowest geo-units

W. Igbal
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Methodology

* Neighbourhood-> geolocation—> Official statistics
* Median income
* Crime

* |dentify crime related conversations: Semantic Search S-BERT

 Sentiment: VADER



Does the online text of
rich & poor
differ?
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Who talks
more about
crime?
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Richer neighbourhoods talk more about crime

B Drugs and Order —=3 Nextdoor Data

Crime Rate per 10000 people

B Theft and Property Damage
Bl \Weapons and Violent Crimes

Official Data

2200
2000 -
1800 -

[

n

o

=
|

Richest 20t

2200
2000 -

1600 A

|

|

|

|

|

|
1800 - :
|

|
1400 |
1200 - :
10001 |
gsoo |
600 4
400 -

200 H

D =
Poorest 80" Richest 20" Poorest 80"
uUsA UK

Percentile of neighborhoods by descending median annual income

16



Icher

Will r

have more

IVE
lHmen

negat

?

{

sent

17



More positive sentiment in richer neighbourhoods
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Can we Infer
neighbourhood's
Income by the
text posted
online?



Can we infer who is rich/poor just from the text?

* Embeddings: dimensionality reduction (768—35)
* Discussed-to-official crime ratio
e Other features

* Multiple common ML models



We can infer the level of iIncome from the text
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Politics and iIncome

(Preliminary Results)



Datasets

 Twitter = Politician tweets
e 10.1 Million from UK
e 2.2 Million from USA

* Nextdoor - Neighbourhood posts
« 4.5 Million from UK
« 24.3 Million from USA



Methodology

* Neighbourhood-> constituency-> Official statistics
* Median income

* Political leaning in tweets - ChatGPT, manual annotation

* Fine-tuned BERT
Setfit Model
* Few shot Learning



Politician agrees with party ideology
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Conclusion

* Rich and poor neighbourhoods have distinct online

text.

» User generated posts can predict neighbourhood's

iIncome.



Future work

* What about politics?

* What about inequality?

* Can we generalise?

\We are also In talk to collaborate with Nextdoor.
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Backup Slides



How representative the data is?

Correlation coefficient score
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Inequality across neighborhoods

Vicinity of a neighborhood:
Neighborhoods within 25 (USA) and 3 (UK) miles

Atkinson Index for each neighborhood:
1 — inequality

0 — equality



Crime Rate per 10000 people

Inequality matters for poorer neighborhoods
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Inequality matters for poorer neighborhoods
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Richer neighborhoods have more positive stance

Percentage
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