

Exploring online manifestations of real-world inequalities on the Nextdoor Social Network

Waleed Iqbal

Coseners-MSN 2023

Published in AAAI ICWSM 2023, in Collaboration with Vahid Ghafouri, Gareth Tyson, Guillermo Suarez-Tangil, Ignacio Castro

Can we identify rich & poor?

Can we identify rich & poor from their online text?

Nextdoor: within neighbourhood interactions

h Nextdoor

Mile End **Bethnal Green** (QMUL neighbourhood) (Adjacent neighbourhood)

Mile End (QMUL neighbourhood)

Bethnal Green (Adjacent neighbourhood)

Mile End **Bethnal Green** (QMUL neighbourhood) (Adjacent neighbourhood)

Mile End **Bethnal Green** (QMUL neighbourhood) (Adjacent neighbourhood)

Mile End (QMUL neighbourhood)

Bethnal Green

(Adjacent neighbourhood)

Nextdoor data

Attributes	USA	UK	Total
Posts	2,201,051	351,894	2,602,045
Neighborhoods	64,283	3,325	67,608
Cities	5,849	10	5,859
zip code(USA)/LSOA(UK)	30872	2512	33284
Comments	17,421,050	2,246,814	19,667,864
Neighbors	6,6480,730	1,744,948	68,225,678

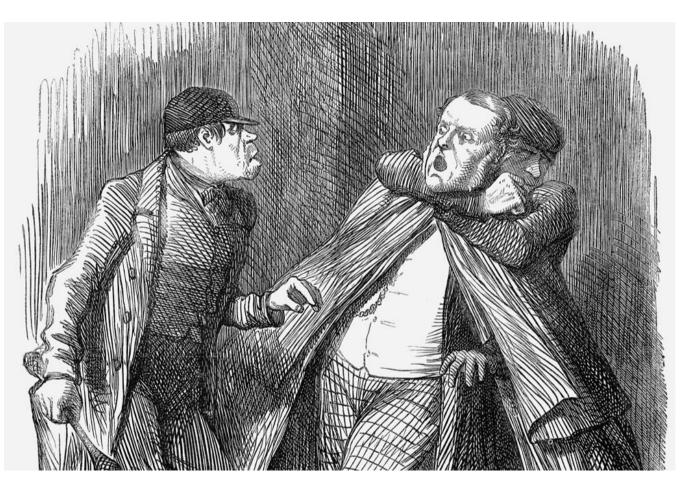
lowest geo-units

Methodology

Neighbourhood
 → geolocation → Official statistics

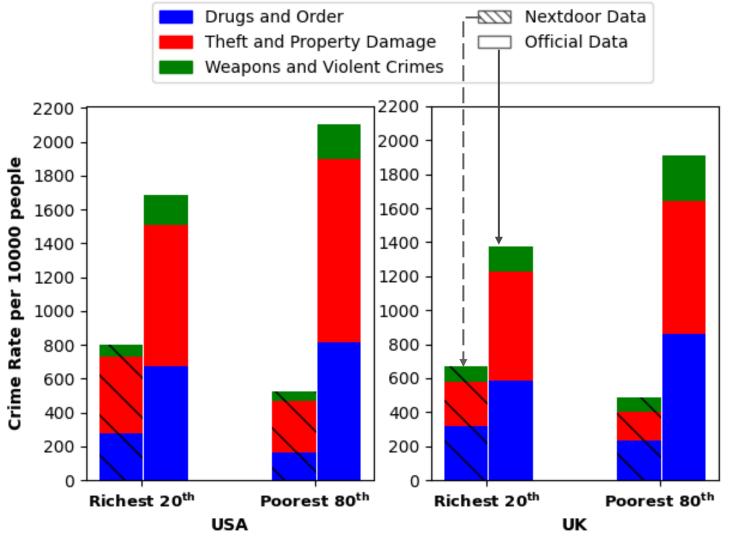
- Median income
- Crime
- Identify crime related conversations: Semantic Search S-BERT
- Sentiment: VADER

Does the online text of rich & poor differ?



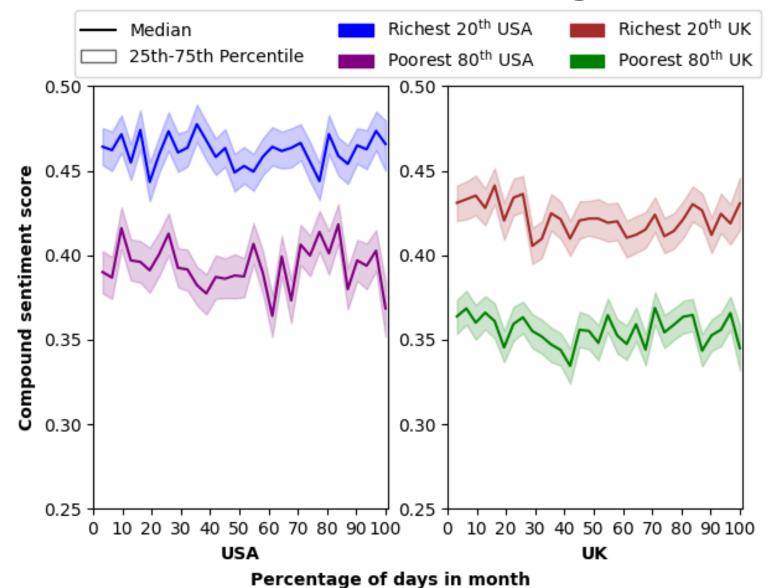
Who talks more about crime?

Richer neighbourhoods talk more about crime



Will richer have more negative sentiment?

More positive sentiment in richer neighbourhoods



Can we infer neighbourhood's income by the text posted online?

Can we infer who is rich/poor just from the text?

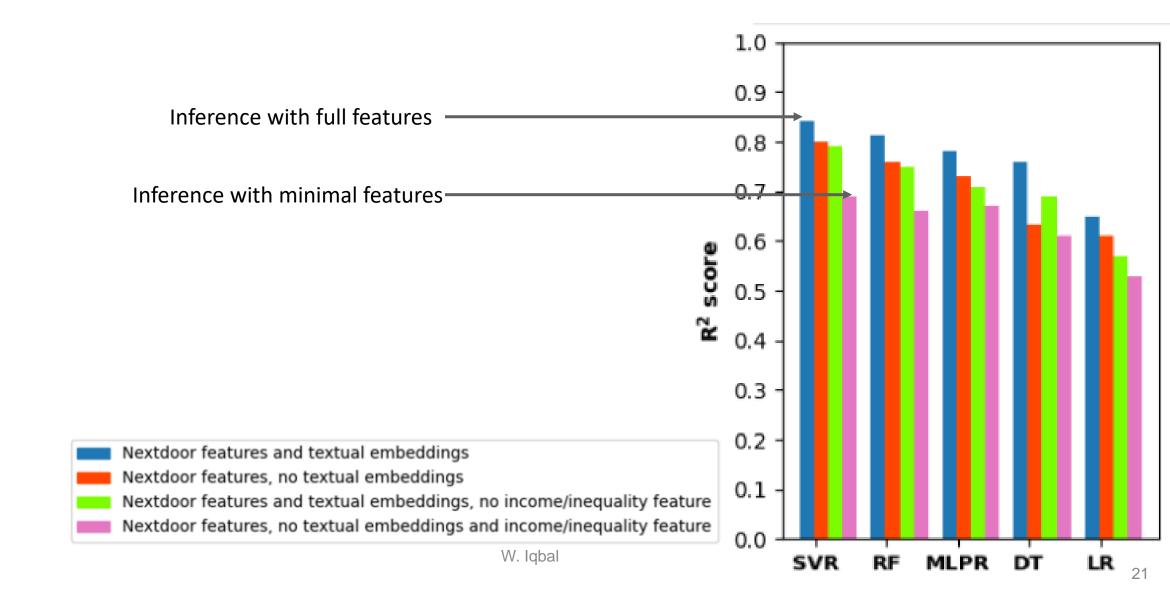
• Embeddings: dimensionality reduction (768→5)

Discussed-to-official crime ratio

Other features

Multiple common ML models

We can infer the level of income from the text



Politics and income (Preliminary Results)

Datasets

- Twitter → Politician tweets
 - 10.1 Million from UK
 - 2.2 Million from USA

- Nextdoor → Neighbourhood posts
 - 4.5 Million from UK
 - 24.3 Million from USA

Methodology

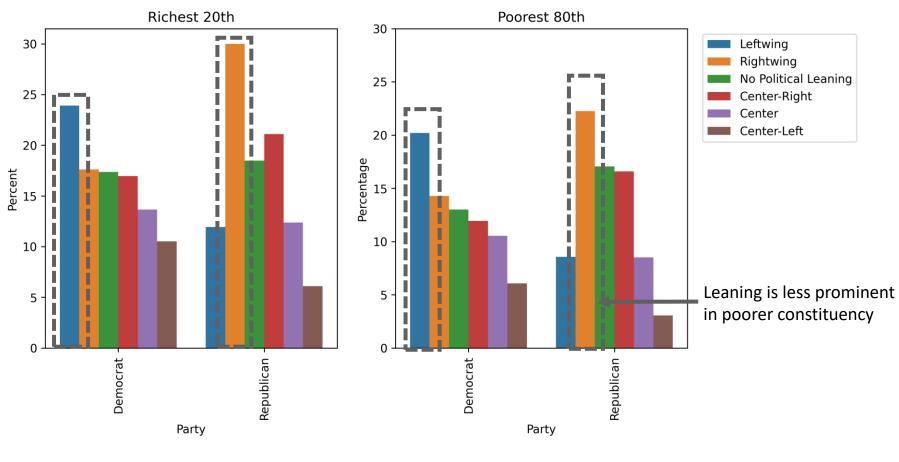
Neighbourhood
 → constituency → Official statistics

Median income

Political leaning in tweets → ChatGPT, manual annotation

- Fine-tuned BERT
 Setfit Model
- Few shot Learning

Politician agrees with party ideology



USA (Twitter)

Conclusion

 Rich and poor neighbourhoods have distinct online text.

User generated posts can predict neighbourhood's income.

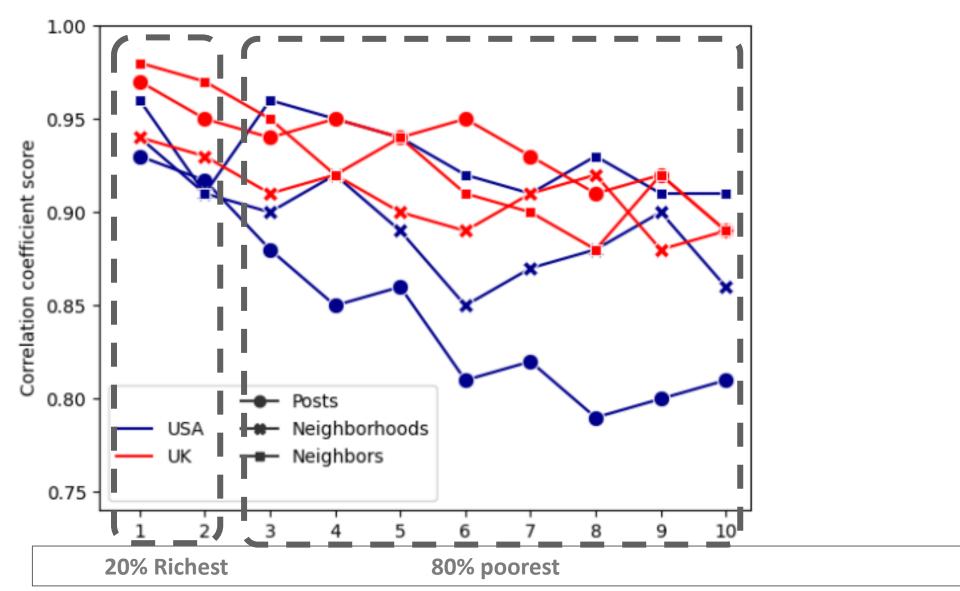
Future work

- What about politics?
- What about inequality?
- Can we generalise?
- We are also in talk to collaborate with Nextdoor.

Backup Slides

Waleed Iqbal 29

How representative the data is?



Inequality across neighborhoods

Vicinity of a neighborhood:

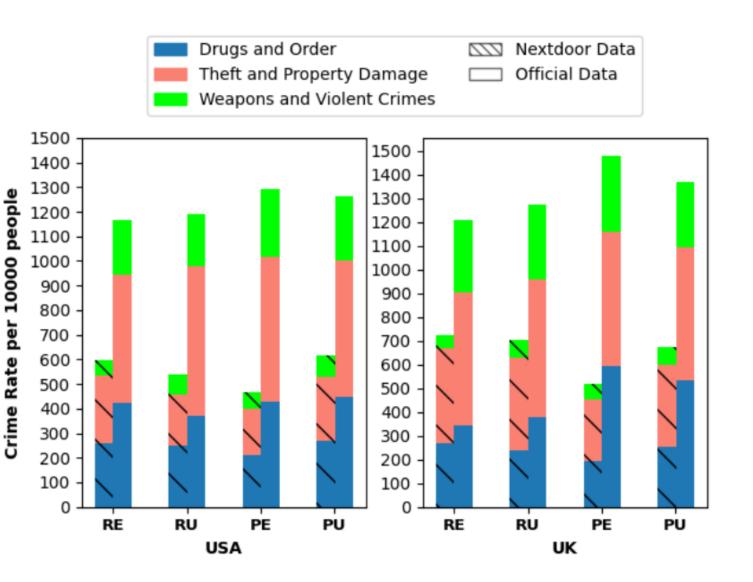
Neighborhoods within 25 (USA) and 3 (UK) miles

Atkinson Index for each neighborhood:

1 → inequality

 $0 \rightarrow \text{equality}$

Inequality matters for poorer neighborhoods



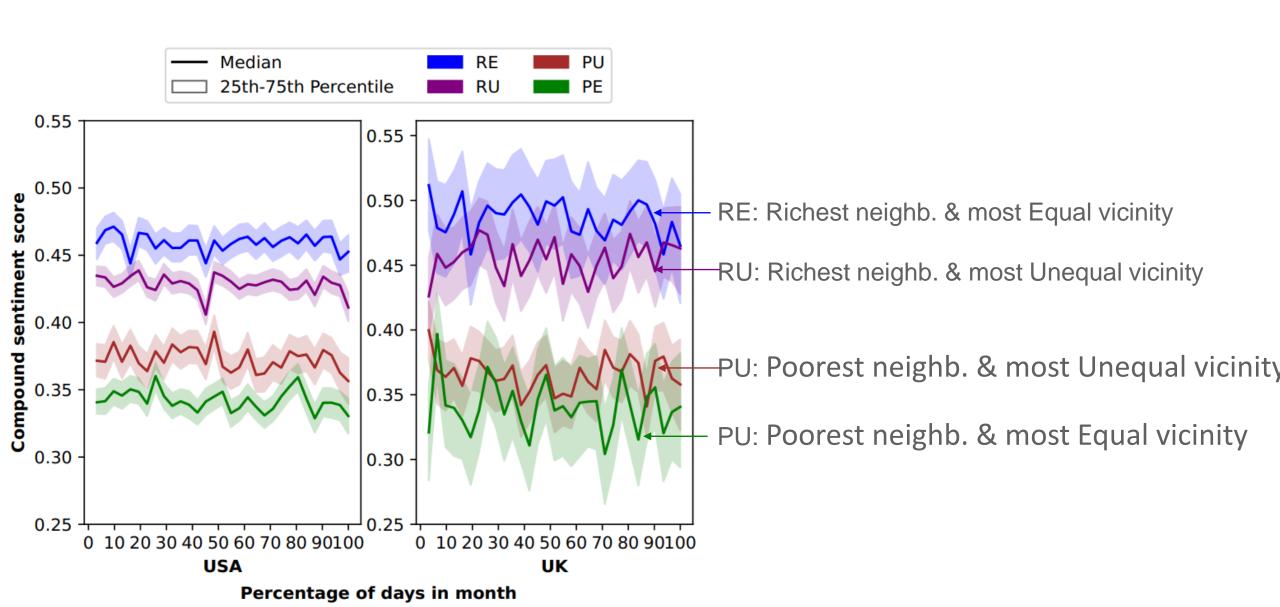
RE: Richest neighb. & most Equal vicinity

RU: Richest neighb. & most Unequal vicinity

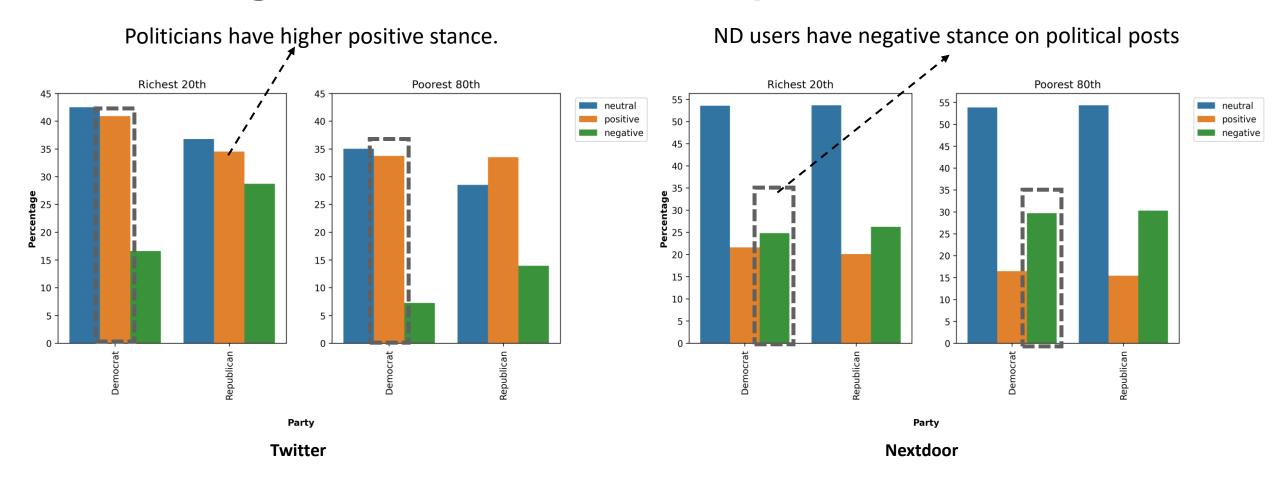
PE: Poorest neighb. & most Equal vicinity

PU: Poorest neighb. & most Unequal vicinity

Inequality matters for poorer neighborhoods



Richer neighborhoods have more positive stance



W. Igbal 34