
Software Offload for the Masses!

Gianni Antichi
https://gianniantichi.github.io

https://gianniantichi.github.io/

2

BPF offload can accelerate applications

3

User Space logic

Kernel Space Logic

• Pushing arbitrary code into kernel without
recompile

• Safe (no kernel crash) thanks to the Verifier

• Allow to reduce cycles spent in userspace-
kernel transitions during I/O operations

BPF offload can accelerate applications

4

BPF offload can accelerate applications

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing
(USENIX NSDI 2021)

My student J

5

BPF offload can accelerate applications and can be very effective!

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing
(USENIX NSDI 2021)

My student J

6

BPF offload can accelerate applications and can be very effective!

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing
(USENIX NSDI 2021)

My student J

Certified!

7

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

8

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

9

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

Current approach:
manually split program execution between “offloadable” code and not

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

10

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

Current approach:
manually split program execution between “offloadable” code and not

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

1. Must understand both application logic and kernel capabilities L

11

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

Current approach:
manually split program execution between “offloadable” code and not

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

1. Must understand both application logic and kernel capabilities L
2. Reason about likely improvements from offloading L L

12

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

Current approach:
manually split program execution between “offloadable” code and not

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

1. Must understand both application logic and kernel capabilities L
2. Reason about likely improvements from offloading L L
3. Implement separate user and kernel components L L L

13

Unfortunately..
We cannot offload everything (we need to take into
account the restrictions imposed by the kernel verifier)

Problem 1

Current approach:
manually split program execution between “offloadable” code and not

• No task switching (no blocking I/O)
• No complex logic (no floats, no SIMD)
• Limit execution time

1. Must understand both application logic and kernel capabilities L
2. Reason about likely improvements from offloading L L
3. Implement separate user and kernel components L L L
4. Can miss opportunities: can only test so many options L L L L

14

Why this is so hard?
Blindly offload part of programs might lead to unwanted results

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

Problem 2

15

Why this is so hard?
Blindly offload part of programs might lead to unwanted results

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

Problem 2

Cannot be offloaded to BPF!
BPF model forbids task switching

(no blocking I/O)

16

Why this is so hard?

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

Problem 2 Blindly offload part of programs might lead to unwanted results

BPF offload path 1?

17

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

100% hit on path 1

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

BPF offload path 1?

18

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

50% hit on path 1

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

BPF offload path 1?

19

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

50% hit on path 1

YES! ..but we need to be
smart!

new request

parse HTTP

check request type

lookup
hash map

generate
response

lookup
hash map

read file

generate
response

path 1 path 2

BPF offload path 1?

20

..it gets just worse..

kernel has limitations
example: no Single Instruction/Multiple Data (SIMD) operations

Fast In-Kernel Sketching with eBPF (ACM Computer Communication Review 2023)

We shall consider this when
deciding what to offload

21

Our proposal: Automate Offloading

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

22

Our proposal: Automate Offloading

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

23

Our proposal: Automate Offloading

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

1 Analyze We need to slice the program rather
than identify calls to common functions

program slicing

24

Our proposal: Automate Offloading

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

1 Analyze

2 Partition
• We need to devise coordination mechanisms

ü kernel offload vs user space program
• We need cost models

ü Is the offload worth it?

program slicing

PGO/FDO

models

25

Our proposal: Automate Offloading

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

1 Analyze

2 Partition

3 Compile

program slicing

PGO/FDO

models

Kernel changes often: a core difference
between offloading to software vs

hardware

26

User Space logic

Kernel Space Logic

• Automate BPF offload is possible but hard J

• Working on a first prototype with encouraging
results

• Shall we add support for common operations
on Linux?
• Example: kTLS
• What common means though?

Final considerations

27

A special thanks to…
Farbod Shahinfar
Sebastiano Miano
Giuseppe Siracusano
Roberto Bifulco
Aurojit Panda

Questions?

28

Backup

29

A last remark: it is not only about logic offload

Data summarization seems promising

new request

parse

hash

respond

BPF offload

30

A last remark: it is not only about logic offload

Data summarization seems promising
…but syscalls can kill a bit the party J

new request

parse

hash

read a file

BPF offload

respond

