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BPF offload can accelerate applications

* Pushing arbitrary code into kernel without
} recompile

[ User Space logic

e Safe (no kernel crash) thanks to the Verifier

[Kernel Space Logic aQBPF} * Allow to reduce cycles spent in userspace-
kernel transitions during /O operations
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BPF offload can accelerate applications and can be very effective!
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Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

1. Must understand both application logic and kernel capabilities ®

2. Reason about likely improvements from offloading ® B

3. Implement separate user and kernel components A

4. Can miss opportunities: can only test so many options BB



Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results
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..It gets just worse..

kernel has limitations
example: no Single Instruction/Multiple Data (SIMD) operations

Bl Userspace (SIMD)
B Userspace (NO-SIMD)
B <BPF

w
o
o

We shall consider this when
deciding what to offload
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Hash rate (Mh/s)
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0 fasthash xxHash murmur3

Hash algorithms
Fast In-Kernel Sketching with eBPF (ACM Computer Communication Review 2023)
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Our proposal: Automate O
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Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)
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@ Analyze

We need to slice the program rather
than identify calls to common functions

L
I

oading

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

program slicing
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Similar to approaches adopted by other

‘ Socket '—H Analysis accelerators (e.g., ML accelerators, video encoders)
Program Selection A Lserspace
) Program o ;
Seneration mp— What it is different:
BPF Prog ¢ Lueell | offload has no new processing capabilities
Back End || Back End

o Analyze program slicing
* We need to devise coordination mechanisms Q
@ Partition v’ kernel offload vs user space program
e \We need cost models PGO/FDO
v’ |s the offload worth it? Q
models
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Our proposal: Automate Offloading

Similar to approaches adopted by other

Socket '—H Analysis accelerators (e.g., ML accelerators, video encoders)
Program Selection A Lserspace
J Program o .
Seneration mp— What it is different:
BPF Prog ¢ Lueell | offload has no new processing capabilities
Back End || Back End

@ Analyze program slicing
@ Partition PGO/FDO
Kernel changes often: a core difference
9 Compile between offloading to software vs Q
hardware models
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Final considerations

« Automate BPF offload is possible but hard ©
[ User Space logic }

* Working on a first prototype with encouraging
results

 Shall we add support for common operations
on Linux?
e Example: KTLS
* What common means though?

[Kernel Space Logic @'e,BPF}
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A last remark: it is not only about logic offload

Data summarization seems promising

BPF offload
new request
100 K Req / s - [Typel: 0%, Type2: 100%] M
Payload Size: 5KB - (Simple - No Syscall) parse
< 70 A v
4 601 hash
g 50 - i
o
= 40 1
2 301 respond
S 20 1
o
= 10 -
0_

Userspace

29



A last remark: it is not only about logic offload

Data summarization seems promising

...but syscalls can kill a bit the party ©
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