Software Offload for the Masses!

Gianni Antichi
https://gianniantichi.github.io

JLUALE MILANO 1863 “Queen Mary
University of London

https://gianniantichi.github.io/

BPF offload can accelerate applications

* Pushing arbitrary code into kernel without
} recompile

[User Space logic

e Safe (no kernel crash) thanks to the Verifier

[Kernel Space Logic aQBPF} * Allow to reduce cycles spent in userspace-
kernel transitions during /O operations

BPF offload can accelerate applications

8
- B MemcachedSR alone ' MemcachedSR I BMC
o
50
2 4
==
=
== 2t I
0 L= l. [B | B l
0 25 50 75 100

% of target requests

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing

(USENIX NSDI 2021)

Throughput (MB / sec)

25 —e
20 A
10 - — * ¢
0- —— NGINX + BPF Offload
—— NGINX
25 50 75 100 125 150 175 200

Load (K req / sec)

My student ©

Throughput

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing

(MReq/s)
(e} [\ B~ (@) oo

BPF offload can accelerate applications and can be very effective!

B MemcachedSR alone ' MemcachedSR I BMC

0 25 50 75 100

% of target requests

(USENIX NSDI 2021)

eBPF-based Networking, <l L >

Observability, Security P
@éo\/
%o,
Cilium is an open source, cloud native solution for ol
providing, securing, and observing network connectivity
between workloads, fueled by the revolutionary Kernel = ¢'(€; vﬂ/o
technology eBPF o)

Throughput (MB / sec)

25 —e
20 -
101 —— + —
0 - —— NGINX + BPF Offload
—— NGINX
25 50 75 100 125 150 175 200

Load (K req / sec)

My student ©

BPF offload can accelerate applications and can be very effective!

8 -
- B MemcachedSR alone - MemcachedSR I BMC
o
)
22 4|
= =
=
=< 2f I
0L l. [& [l
0 25 50 75 100

% of target requests

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing

(USENIX NSDI 2021)

Certified!

Throughput (MB / sec)

25 —e
20 A
10 - e ¢ ¢
0 - —— NGINX + BPF Offload
= NGINX
25 50 75 100 125 150 175 200
Load (K req / sec)
My student ©
CcLOUDELARE TheCloudflare Blog Emal Address

Product News

Deep Dive Life @Cloudflare

Speed & Reliability Security

Cloudflare architecture and how
BPF eats the world .

18/05/2019

Q

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

1. Must understand both application logic and kernel capabilities ®

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

1. Must understand both application logic and kernel capabilities ®
2. Reason about likely improvements from offloading ® B

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

1. Must understand both application logic and kernel capabilities ®
2. Reason about likely improvements from offloading ® B
3. Implement separate user and kernel components A

Unfortunately..

We cannot offload everything (we need to take into

Problem 1 . . . £
account the restrictions imposed by the kernel verifier)

* No task switching (no blocking I/0)
* No complex logic (no floats, no SIMD)
* Limit execution time

Current approach:
manually split program execution between “offloadable” code and not

1. Must understand both application logic and kernel capabilities ®

2. Reason about likely improvements from offloading ® B

3. Implement separate user and kernel components A

4. Can miss opportunities: can only test so many options BB

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

new request

v

parse HTTP

v

check request type

lookup lookup
hash map hash map
ath 1 path 2 v _
J & read file
/ v
generate . generate
n
response , response

Why this is so hard?

‘Problem 2 Blindly offload part of programs might lead to unwanted results

new request

v

parse HTTP

v

check request type

lookup ,,:"' “x\ lookup
hash map hash map
J - | readfile |
| JS R ——
generate /" “‘\.\ generate
response . response

15

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

new request

i BPF offload path 17
parse HTTP

v

check request type

/
|
|
|
!
|

|

/

/

|

/

/

/

lookup
hash map

/
'
y
’
/
/
/
/
|: 7
/
/
/
/
/
/
J
/
.
'
J
'
i
i
'
'
1

generate

response v

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

new request

i BPF offload path 17

parse HTTP

v

check request type

/
.
,
:
:
|
:
:
:
;
:
:

lookup
hash map

i
;
/
,
y
’
/
/
/
/
/
| 7
/
v
/
/
/
/
J
/
.
1
'
J
'
i
i
'
'
1

generate

response v

Throughput (KReq / sec)

140

120 A

100 -

80 -

60 -

40 A

20 A

App

100% hit on path 1

118

Offload

@

17

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

new request

i BPF offload path 17

parse HTTP

v

check request type

/
.
,
:
:
|
:
:
:
;
:
:

lookup
hash map

i
;
/
,
y
’
/
/
/
/
/
| 7
/
v
/
/
/
/
J
/
.
1
'
J
'
i
i
'
'
1

generate

response v

Throughput (KReq / sec)

100

80 -

60 -

40 A

20 A

App Offload

50% hit on path 1

@

18

Why this is so hard?

Problem 2 Blindly offload part of programs might lead to unwanted results

new request

i BPF offload path 17

parse HTTP

v

check request type

/
!
|
i
'
|
[
/
[
/
/

lookup
hash map

i
'
;
/
,
y
’
/
/
/
/
/
| 7
/
v
/
/
/
/
J
/
.
1
'
J
'
i
:
'
'
1

generate

response v

Throughput (KReq / sec)

100

80 -

60 -

40 A

20 A

YES! ..but we need to be

smart!

App Offload

50% hit on path 1

@

19

..It gets just worse..

kernel has limitations
example: no Single Instruction/Multiple Data (SIMD) operations

Bl Userspace (SIMD)
B Userspace (NO-SIMD)
B <BPF

w
o
o

We shall consider this when
deciding what to offload

=
o
o

Hash rate (Mh/s)
N
(@]
o

0 fasthash xxHash murmur3

Hash algorithms
Fast In-Kernel Sketching with eBPF (ACM Computer Communication Review 2023)

20

Our proposal: Automate O

Socket
Program

|3

Analysis

Selection

Generation

V4

N

BPF

Prog

Back End

Back End

'

Userspace
Program

BPF
Program

L
I

oading

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

21

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Our proposal: Automate O

SOCket L Analysis
Program -
Selection

Generation
y 4 N
BPF Prog
Back End || Back End

'

Userspace
Program

BPF

Program

L
I

oading

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

22

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Our proposal: Automate O

Socket : Analysis
Program -
Selection

Generation

y 4

N

BPF

Prog

Back End

Back End

Userspace

J I Program
BPF

Program

'

@ Analyze

We need to slice the program rather
than identify calls to common functions

L
I

oading

Similar to approaches adopted by other
accelerators (e.g., ML accelerators, video encoders)

What it is different:
offload has no new processing capabilities

program slicing

23

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

L
I

Our proposal: Automate Offloading

Similar to approaches adopted by other

‘ Socket '—H Analysis accelerators (e.g., ML accelerators, video encoders)
Program Selection A Lserspace
) Program o ;
Seneration mp— What it is different:
BPF Prog ¢ Lueell | offload has no new processing capabilities
Back End || Back End

o Analyze program slicing
* We need to devise coordination mechanisms Q
@ Partition v’ kernel offload vs user space program
e \We need cost models PGO/FDO
v’ |s the offload worth it? Q
models

Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

L
I

Our proposal: Automate Offloading

Similar to approaches adopted by other

Socket '—H Analysis accelerators (e.g., ML accelerators, video encoders)
Program Selection A Lserspace
J Program o .
Seneration mp— What it is different:
BPF Prog ¢ Lueell | offload has no new processing capabilities
Back End || Back End

@ Analyze program slicing
@ Partition PGO/FDO
Kernel changes often: a core difference
9 Compile between offloading to software vs Q
hardware models

25
Automatic Kernel Offload Using BPF. F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, G. Antichi. ACM HotOS 2023

Final considerations

« Automate BPF offload is possible but hard ©
[User Space logic }

* Working on a first prototype with encouraging
results

 Shall we add support for common operations
on Linux?
e Example: KTLS
* What common means though?

[Kernel Space Logic @'e,BPF}

A special thanks to...

Farbod Shahinfar
Sebastiano Miano
Giuseppe Siracusano
Roberto Bifulco
Aurojit Panda

> Questions?

27

Backup

A last remark: it is not only about logic offload

Data summarization seems promising

BPF offload
new request
100 K Req / s - [Typel: 0%, Type2: 100%] M
Payload Size: 5KB - (Simple - No Syscall) parse
< 70 A v
4 601 hash
g 50 - i
o
= 40 1
2 301 respond
S 20 1
o
= 10 -
0_

Userspace

29

A last remark: it is not only about logic offload

Data summarization seems promising

...but syscalls can kill a bit the party ©

100 KReq /s - [Typel: 0%, Type2: 100%]
Payload Size: 5KB - (Simple + Syscall)

Throughput (KReq / sec)

= N w H (S
o o o
1 1

(@)
1

(@)
1

o
1

Userspace

N |

Offload

BPF offload

new request

v
parse

v
hash

i

read a file

l

respond

30

