
Typing network communication

Ivan Nikitin
University of Glasgow

| Ivan Nikitin | 2023 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/legalcode

Types

1

Types

We can use static typing to:

• Protect from run-time errors.
• Document intention.
• Provide clear errors.

2

Behavioural Types - Session Types

• Behaviour - the communication
that occurs in terms of
sequences of actions.

• TCP Handshake - Send a SYN, get
a SYN-ACK, send an ACK.

• We can express this
communication as a type.

3

Behavioural Types - Session Types

Γ = s[server] : client ⊕ syn(SYN).client&synack(SYN-ACK)
.client ⊕ ack(ACK).end,

s[client] : server & syn(SYN).server ⊕ synack(SYN-ACK)
.server&ack(ACK).end

• ⊕ - Send (Select), & - Receive (Offer),
. - continue as, end - end of communication.

• Each participant’s local type is their view of the communication.
• E.g. from the server viewpoint - send a message of type SYN to
the client, continue as receive a message of type SYN-ACK from
the client, continue as send a message of type ACK to the client,
continue as end.

4

Behavioural Types - Session Types

An encoding of session types in a programming language gives us
the ability to ensure that:

• Messages sent and received are in the expected order.
• Messages are of the expected type.
• Communication occurs between the expected participants.

5

Behavioural Types - Session Types

An approach to encoding session types can be:

• Encode session type actions as a type. E.g.
⊕ — Select < Message, Continuation >,
& — Offer < Message, Continuation >

• Channel parametrised over roles.
Channel < ParticipantOne,ParticipantTwo >

• Channel has functions that use the session type.
select(message, session_type)− > SessionType

• Continuation passing style ensures adherence to the sequence
of actions. Parametrisation over roles ensures the channel is
used correctly.

6

Behavioural Types - Session Types

+---------+ ---------\ active OPEN
| CLOSED | \ -----------
+---------+<---------\ \ create TCB
| ^ \ \ snd SYN

passive OPEN | | CLOSE \ \
------------ | | ---------- \ \
create TCB | | delete TCB \ \

V | \ \
rcv RST (note 1) +---------+ CLOSE | \

-------------------->| LISTEN | ---------- | |
/ +---------+ delete TCB | |
/ rcv SYN | | SEND | |
/ ----------- | | ------- | V

+--------+ snd SYN,ACK / \ snd SYN +--------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd SYN,ACK	
	------------------ -------------------	
+--------+ rcv ACK of SYN \ / rcv SYN,ACK +--------+

------------- | | -----------
| | snd ACK
V V

+---------+
| ESTAB |
+---------+

// Instantiate the session type of the TCP server.
type ServerSessionType = OfferOne<RoleClient, Syn,

SelectOne<RoleClient, SynAck,
OfferOne<RoleClient, Ack,
SelectOne<RoleClient, FinAck,

End>>>>;
let st_server = ServerSystemSessionType::new();
// Create the session typed NetChannel
let mut chan = NetChannel::<RoleServer,

RoleClient>::new(iter, tx, remote_addr);
// Recieve a SYN packet.
let (syn, cont) = chan.offer_one(st_server);
// Send the message along the channel, following our

session type.
let cont = chan.select_one(cont, SynAck {...});
// Recieve a message of type ACK.
let (ack, cont) = chan.offer_one(cont);
// Send the FIN−ACK along the channel.
let cont = chan.select_one(cont, FinAck {...});
// Close
chan.close(cont);

Γ = s[ss]:cs&syn(SynSet).
cs⊕ syn_ack(SynAckSet).
cs&(AckSet).
cs⊕ f i n(Fi n).end

7

To Summarise

• We can encode the behaviour of a protocol as a type.
• Session types are a discipline used to express concurrent
communication.

• An encoding of session types in a programming language
leverages the compiler to make sure the protocol is
implemented according to its session type.

8

