

Scalable Device Identification for IoT Networks using Binary Classification Models at the Edge

Roman Kolcun, Richard Mortier¹

¹University of Cambridge, UK

Coseners 2023

13 July 2023

Why IoT?

- Billions of devices worldwide
- Deployed at our homes
- Always listening/watching
- Can leak information about our lives
- Device can be hacked or misconfigured
- In order to apply different rules, devices need to be identified
- Signatures could be used to identify when a device is misbehaving
- An unknown device can be identified depending on its network signature

Architecture

How Do We Differ From Other Solutions?

Scalability

- No two households are the same
- Vast majority of other approaches use single model to classify all devices

Responsivness

- We want to achieve near real-time response
- Many other approaches collect data for extended period of time (e.g. hours)

Dataset

- 40 IoT devices in a testbed
- Contain active and idle periods
- Devices might have been disconnected for arbitrary lengths of periods
- Therefore data are split into 4 parts depending on percentage not time

Source: Kolcun, R., Popescu, D.A., Safronov, V., Yadav, P., Mandalari, A.M., Mortier, R. and Haddadi, H., 2021. Revisiting IoT device identification., TMA 2021

No.	Time	Source	Destination	Protocol	Length Info
E.					60 443 35745 [ACK] Seq=1 Ack=1 Win=2804 Len=0
	2 8.099084	52.95.121.5	192.168.20.130	TLSv1.2	180 Application Data
	3 4.703030	155.198.142.7	192.168.20.130	DNS	146 Standard query response 0x5215 A 2.android.pool.ntp.org A 176.58.109.199 A 213.138.110.176 A 35.178.171.140 A 217.155.2.22
	4 4.753077	176.58.109.199	192.168.20.130	NTP	90 NTP Version 3, server
	5 4.793956	155.198.142.7	192.168.20.130	DNS	99 Standard query response 0xdd6d A arcus-uswest.amazon.com A 52.119.164.214
	6 4.974124	52.119.164.214	192.168.20.130	TCP	66 443 - 57355 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 MS=64 SACK_PERM=1
	7 5.056173	155.198.142.7	192.168.20.130	DNS	90 Standard query response 0xab3f A api.amazon.com A 52.94.240.242
	8 5.135543	52.94.248.242	192.168.20.130	TCP	66 443 - 68576 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 MS=64 SACK_PERM=1
	9 5.158207	52.119.164.214	192.168.20.130	TCP	60 [TCP Window Update] 443 - 57355 [ACK] Seq=1 Ack=1 Win=27136 Len=0
	10 5.158916	52.119.164.214	192.168.20.130	TCP	66 443 - 58819 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 MS=64 SACK_PERM=1
1	11 5.159312	52.119.164.214	192.168.20.130	TCP	66 443 - 33711 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 MS=64 SACK_PERM=1
1	12 5.169786	52.119.164.214	192.168.20.130	TCP	60 443 - 57355 [ACK] Seq=1 Ack=231 Win=28160 Len=0
	13 5.160860	52.119.164.214	192.168.20.130	TLSv1.2	146 Server Hello
	14 5.169882	52.119.164.214	192.168.20.130	TLSv1.2	4981 Certificate
	15 5.161730	52.119.164.214	192.168.20.130	TLSv1.2	392 Server Key Exchange
	16 5.161792	52.119.164.214	192.168.20.130	TLSv1.2	63 Server Hello Done
	17 5.186614	52.119.164.214	192.168.20.130		63 [TCP Retransmission] 443 57355 [PSH, ACK] Seq=5278 Ack=231 Win=28168 Len=9
	18 5.199284	155.198.142.7	192.168.20.130	DNS	184 Standard query response 8x571c A device-metrics-us.amazon.com A 54.239.31.37
	19 5.213925	52.94.240.242	192.168.20.130	TCP	60 [TCP Window Update] 443 - 60576 [ACK] Seq=1 Ack=1 Win=27136 Len=0
	28 5.228998	52.94.240.242	192.168.20.130	TCP	60 443 - 60576 [ACK] Seq=1 Ack=254 Win=20160 Len=0
	21 5.222174	52.94.240.242	192.168.20.130	TLSv1.2	1514 Server Hello
	22 5.222197	52.94.240.242	192.168.20.130	TLSv1.2	3090 Certificate, Server Key Exchange, Server Hello Done
	23 5.251443	52.94.240.242	192.168.20.130	TCP	170 [TCP Retransmission] 443 - 60576 [PSH, ACK] Seq=4381 Ack=254 Win=28160 Len=116
	24 5.281859	54.239.31.37	192.168.20.130	TCP	66 443 - 42928 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 MS=64 SACK_PERM=1
1	25 5.287284	54.239.31.37	192.168.20.130	TCP	66 443 - 41642 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1460 WS=64 SACK_PERM=1
	26 5.303406	52.119.164.214	192.168.20.130	TCP	60 [TCP Window Update] 443 - 58819 [ACK] Seq=1 Ack=1 Win=27136 Len=0
	27 5.303463	52.119.164.214	192.168.20.130	TCP	60 [TCP Window Update] 443 - 33711 [ACK] Seq=1 Ack=1 Win=27136 Len=0
	28 5.303770	52.119.164.214	192.168.20.130	TCP	60 443 - 58819 [ACK] Seq=1 Ack=231 Win=28160 Len=0
	29 5.303794	52.119.164.214	192.168.20.130	TLSv1.2	146 Server Hello
	30 5.303969	52.119.164.214	192.168.20.130	TCP	1514 443 - 58819 [ACK] Seq=93 Ack=231 Win=28160 Len=1460 [TCP segment of a reassembled PDU]
	31 5.303994	52.119.164.214	192.168.20.130	TLSv1.2	3441 Certificate
	32 5.385888	52.119.164.214	192.168.20.130	TCP	60 443 - 33711 [ACK] Seq=1 Ack=231 Win=28160 Len=0
	33 5.305030	52.119.164.214	192.168.20.130	TLSv1.2	392 Server Key Exchange
	34 5.305038	52.119.164.214	192.168.20.130	TLSv1.2	63 Server Hello Done
	35 5.385846	52.119.164.214	192.168.20.130	TLSV1.2	145 Server Hello
	36 5.385856	52.119.164.214	192.168.20.130	TCP	1514 443 - 33711 [ACK] Seq=93 Ack=231 Win=28160 Len=1460 [TCP segment of a reassembled PDU]
	37 5.385899	52.119.164.214	192.168.20.130	ILSV1.2	3441 Certificate
1	38 5.305973	52.119.164.214	192.168.20.130	TLSv1.2	392 Server Key Exchange
1	39 5.305985	52.119.164.214	192.168.20.130	TLSV1.2	63 Server Hello Done

Other Examples

(b) Google Home

(d) Ring Doorbell

We want to achieve near on-line device identification.

- Sampling frequency: 10 Hz and 2 Hz
- Number of samples: 300 and 150 (height of the input)
- Number of FFT parameters: 120 and 60 (width of the input)

Buffer time for input 150 \times 120 is 30 minutes and new input arrives every 15 seconds.

Buffer time for input 75 \times 60 is 7.5 minutes and new input arrives every 7.5 seconds.

Results - The Good, the Bad and the Ugly

- Hihghest confidence (hc) positive classification if the model is the most confident amnogst all models.
- Confident enough (ce) positive classification if the model is at least 50% confident.

Table: F_1 score of various classifiers. *hc* shows the *highest confidence* scenario while *ce* shows the *confident enough* scenario.

Input Size	75 × 60		75 × 120		150 × 60		150 × 120	
Prediction Window	hc	се	hc	се	hc	се	hc	се
0	0.90	0.94	0.91	0.95	0.91	0.94	0.93	0.95
1	0.72	0.78	0.75	0.80	0.74	0.78	0.76	0.80
2	0.47	0.55	0.50	0.56	0.50	0.56	0.54	0.59

Contact:

roman.kolcun@cl.cam.ac.uk

