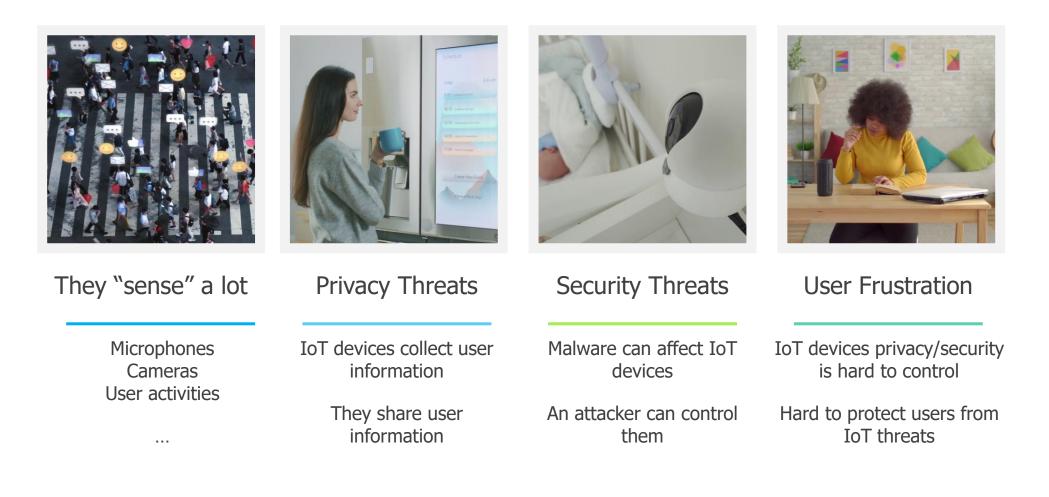


DO WE NEED MYRIADS OF CLOUD-BASED SAFEGUARDS? Using a home router for AI-powered IoT threats detection


Anna Maria Mandalari, Vadim Safronov

Hamed Haddadi, Daniel J. Dubois, David Choffnes

Problem: IoT Devices Expose Information Over the Internet

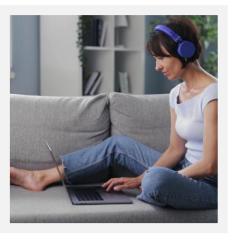
IOT PROTECTION SYSTEMS: SAFEGUARDS

Why Were We Interested in This?

Control

Device detection

Intelligent profiles



Security

Vulnerability Assessment

Brute Force Protection

Anomaly Detection

Privacy

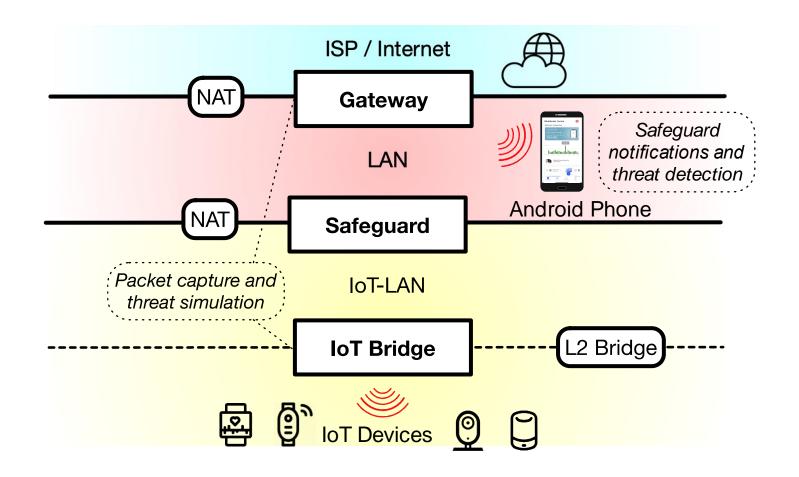
Content filtering

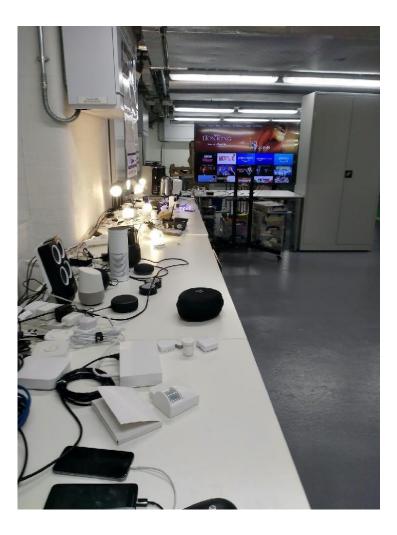
Network Intrusion Prevention

These safeguards may currently be ineffective in preventing risks.
Their cloud interactions and data collection operations may introduce privacy risks.

Research Questions

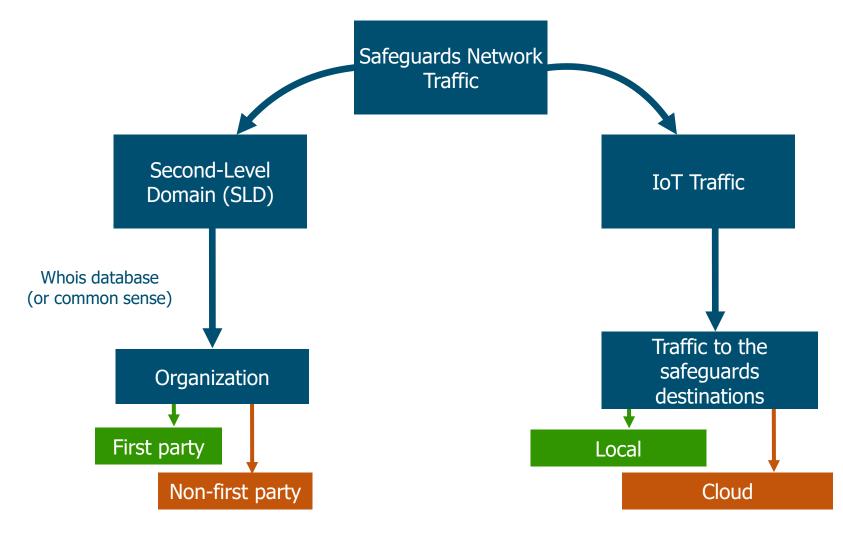
□ **Goal 1:** What are the privacy and security implications on how a safeguard works?


□ **Goal 2:** Do the safeguards detect threats?


□ **Goal 3:** What are the side effects of the safeguards?

IoT Safeguards

Testbed


Research Questions

- □ **Goal 1:** What are the privacy and security implications on how a safeguard works?
 - **Identify locality**: cloud vs local operation
 - **Operation**: usage third-party services to operate

IoT Safeguards

Processing Locality & Party Characterization

Processing Locality & Party Analysis

Safeguard	Destinations #	Cloud	<pre># and list of Support/3rd Parties</pre>
Avira	10	Yes	(1) api.mixpanel.com
Bitdefender	5	Yes	-
F-secure	1	Yes	-
FingBox	5	Yes	(2) api.snapcraft.io, mlab-ns.appspot.com
Firewalla	4	No	(1) api.github.com
McAfee	22	Yes	(3) app-measurement.com, commscope.com, avast.com
RatTrap	1	Yes	-
TrendMicro	3	Yes	(1) policy.ccs.mcafee.com

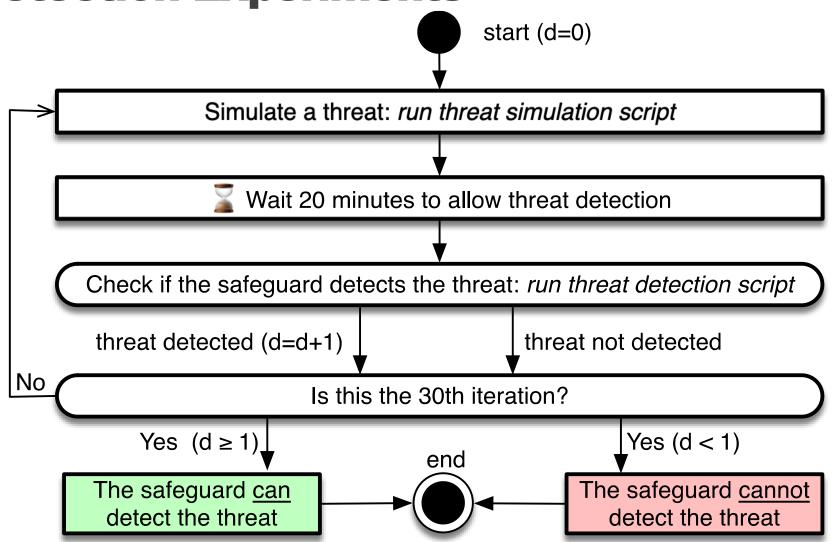
<u>Take away</u>: - Usage of the cloud for performing analysis, potentially leaving the user vulnerable in the event of a data breach.

- Destinations contacted that are not first parties.

IoT Device Identification

What is Private Mode? 100 Percentage of Devices 80 Bitdefender BOX can offer your household a 60 period of privacy by preventing smart assistants from sending recordings of your conversations. When this feature is active, no traffic involving smart assistants will leave your home. Be aware that, during this private time, your smart assistants won't be able to fulfill your requests. 40 Get privacy for: 30 minutes 20 1 hour 6 hours 0 FingBox Firewalla McAfee Bitdefender F-secure Avira RatTran Protection techniques applied to specific vendors ENABLE Safeguards

Take away: only a small percentage of IoT devices is correctly identified.


Research Questions

- □ **Goal 2:** Do the safeguards detect threats?
 - Safeguards **notify** the user when detecting privacy or security threats

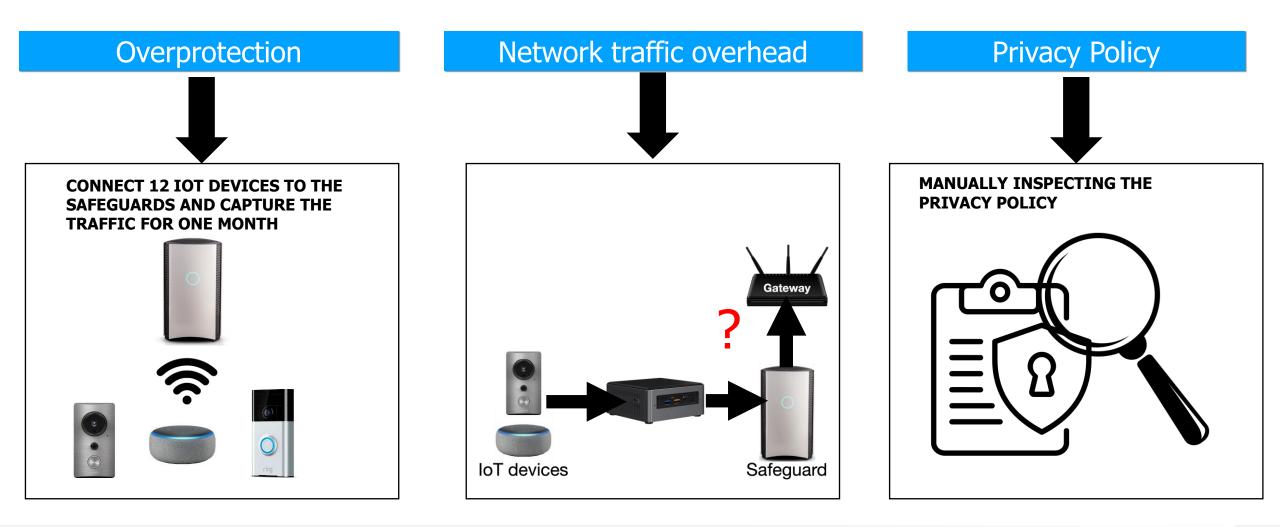
IoT Safeguards

Threat Detection Experiments

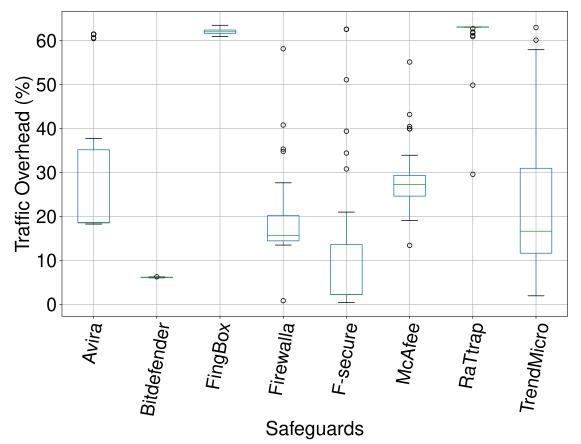
Evaluation of Threat Detection Capability

	Threat	Avira	Bitdefender	F-Secure	Fingbox	Firewalla	McAfee	RaTtrap	TrendMicro
	Anomaly ON/OFF	-	X	Х	-	Х	Х	Х	-
Security	Anomaly Traffic Pattern	-	X	×	ime	cons	siste	ncv	()
	Abnormal Upload	-	X	×				······y	レン
	Open Port	Х	√(30s)	-	X	√(30s)	Х	-	X
	Weak Password	Х	X	-	-	-	Х	-	Х
	Device Quarantine	-	\checkmark	-	\checkmark	\checkmark	-	Х	-
	SYN Flooding	Х	√(30s)	X	-	√(40s)	X	X	Х
	UDP Flooding	Х	X	X	-	X	Х	Х	Х
	DNS Flooding	Х	X	X	-	Х	Х	Х	Х
	HTTP Flooding	Х	√(3m)	X	-	√(2m)	Х	Х	Х
	IP Fragmented Flood	Х	×	Х	-	Х	Х	X	X
	Port Scanning	√(45s)	Х	Х	-	Х	-	Х	√(30s)
	OS Scanning	√(45s)	×	Х	-	Х	-	Х	Х
	Malicious Destinations	\checkmark	\checkmark	Х	-	\checkmark	Х	Х	\checkmark
	PII Exposure	Х	X	-	-	X	-	-	-
Privacy	Unencrypted Traffic	Х	X	-	-	X	-	-	-
	DNS over HTTPS	Х	\checkmark	-	-	\checkmark	-	-	-

<u>Take away</u>: - only 3 out of 14 threats are detected by the safeguards. 3 out of 8 safeguards do not detect any threats at all, despite they claiming to do so in their specifications - Some of safeguards take between 45 seconds and 3 minutes to detect a security threat.


Research Questions

- □ **Goal 3:** What are the side effects of the safeguards?
 - Traffic overhead, overprotection, privacy implications

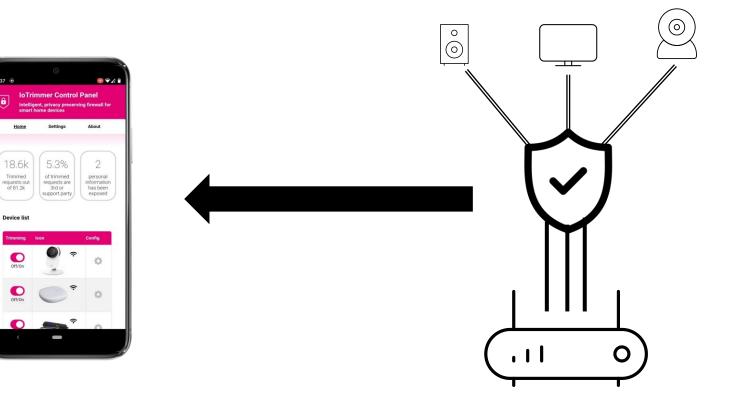


IoT Safeguards

Safeguard Side Effects

Traffic Overhead

<u>Take away</u>: Some of the safeguards introduce significant traffic overhead. In general the overhead is never less than 10% of the traffic of the IoT devices.


Privacy Policy

Privacy Policy	Avira	Bitdefender	F-Secure	Fingbox	Firewalla	McAfee	RaTtrap	TrendMicro
Anonymization	\checkmark	√ [pseudonymize]	X [ceasing subscription]	\checkmark	Х	Х	Х	Х
Usageof Personal Data	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Retention Period	In accordance with legal requirements	10 years	6 months	As long as necessary	Indefinitely	Subscription period	Subscription period	Ongoing legitimate business need
Third Party	SaaS vendor, Akamai. Mixpanel, Ivanti	Partners	Partners	Partners	X	Partners	Partners	Partners

<u>Take away</u>: Most user information is shared with third-party entities, sometimes without anonymization. Sharing data outside user's privacy jurisdiction.

Mitigation

- Regularly train the ML models at the edge to keep up with the changes in device usage trends
- Approaches that rely on local traffic analysis: edge-based solutions running on the home gateway

Motivation

- Inefficiency of existing IoT solutions
- Most of them are cloud-based: might share users' personal/sensitive data

Motivation

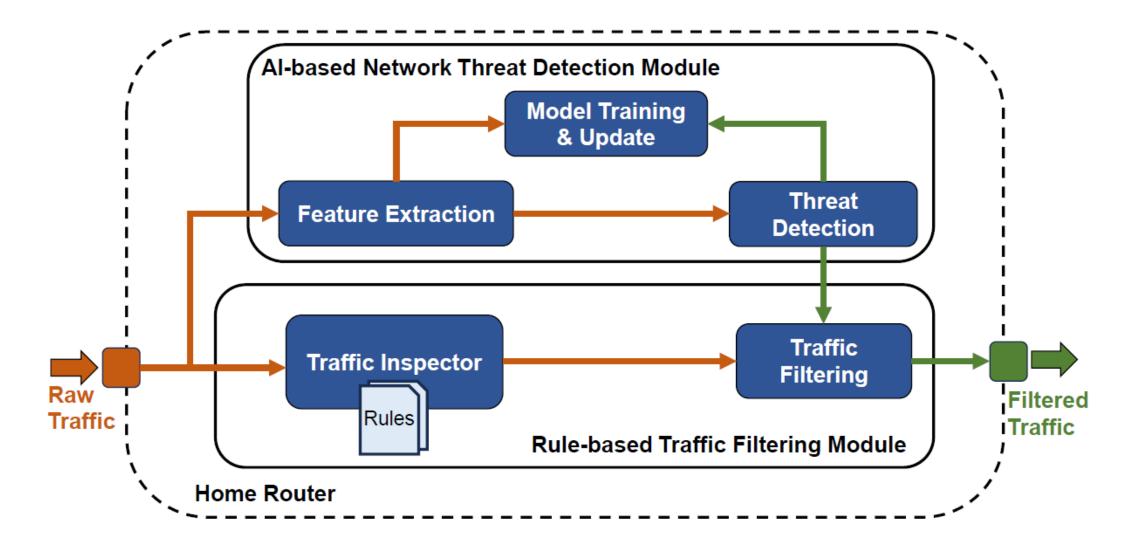
- Inefficiency of existing IoT solutions
- Most of them are cloud-based: might share users' personal/sensitive data

Research Questions

- Can we replace cloud-based IoT protection systems by a local IDS/IPS running on a home router?
- If so, what is the performance overhead?

Motivation

- Inefficiency of existing IoT solutions
- Most of them are cloud-based: might share users' personal/sensitive data


Research Questions

- Can we replace cloud-based IoT protection systems by a local IDS/IPS running on a home router?
- If so, what is the performance overhead?

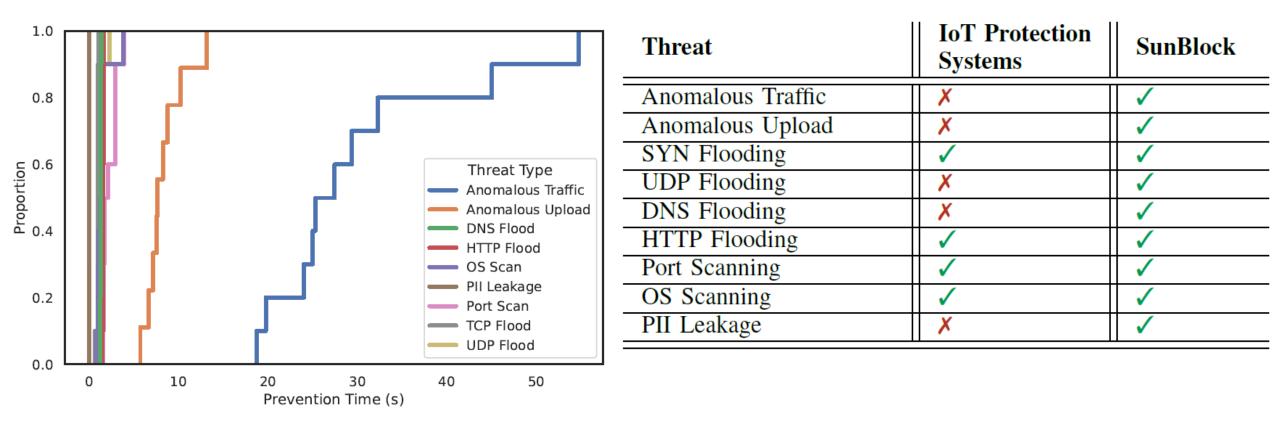
Benefits

- Security improvement: cover wider spectrum of IoT threats in a home network
- Privacy improvement: All users' data processed locally and not shared with cloud

SunBlock Architecture

Implementation: home router with IoT protection

- LinkSys WRT3200ACM, OpenWRT Linux-based OS
- ~4GB flash, 512MB swap (for ML training only), 512 MB RAM
- Snort3 for rule-based filtering, netml with OCSVM for AI-based module


Implementation: home router with IoT protection

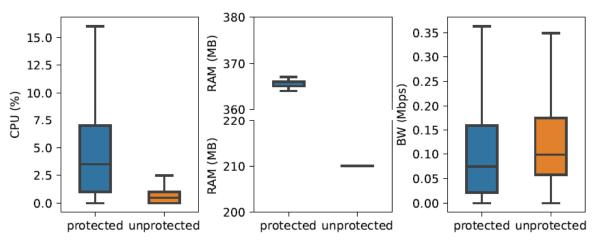
- LinkSys WRT3200ACM, OpenWRT Linux-based OS
- ~4GB flash, 512MB swap (for ML training only), 512 MB RAM
- Snort3 for rule-based filtering, netml with OCSVM for AI-based module

Testbed

- 10 most popular IoT device types (according to IoT Inspector paper)
- Smart speakers (Echo spot, Google Home), Video (FireTV), Camera (Yi, Blink), Home automation (Nest thermostat, TP-Link/Wemo plugs, Gosund/TP-Link bulbs)
- Devices were triggered daily using the methodology similar to the S&P paper

Evaluation: threat coverage and prevention time

Evaluation: performance overhead

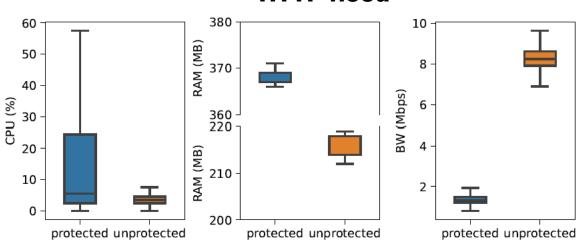

Model training

Protection Level	CPU (%)	RAM (MB)	swap (MB)	Training Time (s)	
Rule-based & AI-based	18 ±3	444 ±4	296 ±21	924 ±253	
AI-based only	26 ±2	442 ±6	197 ±28	429 ±171	
Rule-based only	32 ±4	423 ±9	132 ±20	180 ± 22	
Unprotected	39 ±2	410 ± 3	55 ±1	113 ±10	

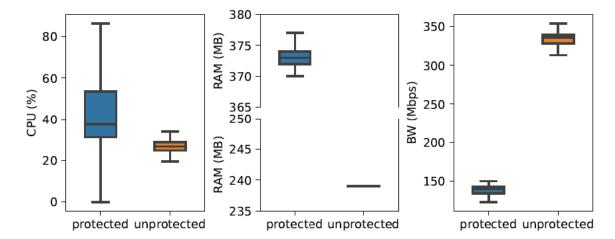
Evaluation: performance overhead

Model training

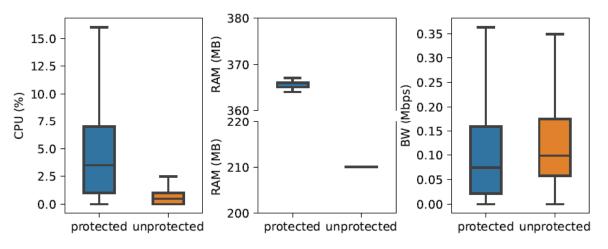
Protection Level	CPU (%)	RAM (MB)	swap (MB)	Training Time (s)	
Rule-based & AI-based	18 ±3	444 ±4	296 ±21	924 ±253	
AI-based only	26 ±2	442 ±6	197 ±28	429 ±171	
Rule-based only	32 ±4	423 ±9	132 ±20	180 ± 22	
Unprotected	39 ±2	410 ± 3	55 ±1	113 ±10	



Regular IoT traffic


Evaluation: performance overhead

Model training


Protection Level	CPU (%)	RAM (MB)	swap (MB)	Training Time (s)	
Rule-based & AI-based	18 ±3	444 ±4	296 ±21	924 ±253	
AI-based only	26 ±2	442 ±6	197 ±28	429 ±171	
Rule-based only	32 ±4	423 ±9	132 ±20	180 ±22	
Unprotected	39 ±2	410 ±3	55 ±1	113 ±10	

UDP flood

Regular IoT traffic

HTTP flood

Takeaways

• IoT threats can be rapidly detected on a home router with Rule&AI-based filtering algorithms

• No need in cloud-based solutions and in sharing your personal data

 Increase in CPU and RAM doesn't affect main router functions leaving plenty of free resources: >50% free CPU and ~30% free RAM

• Further plans: beta testing and precise performance benchmarking against existing IoT solutions

Anna Maria Mandalari

University College London

Vadim Safronov

Cambridge University

Hamed Haddadi

Imperial College London

Daniel Dubois

Northeastern University

David Choffnes

Northeastern University

DO WE NEED MYRIADS OF CLOUD-BASED SAFEGUARDS? Using a home router for AI-powered IoT threats detection

