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Challenges Faced by Congestion Control Protocols

Congestion Control Protocols are responsible for efficient and fair distribution of network resources. 

However, they face several challenges:

- Dynamic Network Conditions: The volatile nature of network parameters such as bandwidth, 

delay, and loss rate requires CC protocols to adapt in real time, which is a complex task.

- Adapting to New Technologies: Emerging technologies, such as 5G or IoT devices, pose new 

challenges requiring CC protocols to adapt and evolve.

- Performance in Diverse Scenarios: CC protocols must perform effectively in varied network 

scenarios, like data centers, mobile networks, satellite communications, etc.



The Convergence of RL and CC

- RL-based CC optimises CC protocols by interacting with the environment and optimising a given 

reward function.

- Elements:

- Reward function (throughput, delay, loss rate)

- Observable network state space (delay variation, loss rates, throughput)

- Action space (cwnd update value, transmission rate)

- Learning algorithms (PPO, DDPG)

Model Protocol



The Current State-of-the-Art

- RL-based approaches have seen varied implementations
- Numerous simulation-based implementations (ns-2, ns-3 models)

- Growing number of real network stack implementations (UDT, Linux Kernel)

2019

TCP-Drinc, SmartCC, DRL-CC, Aurora 

2020

Orca, Eagle

2016

TCPLearning

2018

RL-TCP,  QTCP 

2022

Spine, Pareto, MOCC

Network stackSimulation



The Real-World Viability of RL-CC (Ignoring Computational 

Complexity)

- Evaluation of methodologies of RL-CC approaches performance on real network stack 
present some limitations:

- Single-flow efficiency focused
- Black-box experimental setup difficult to interpret
- Limited reproducibility 



Challenges in Interpretation

- Hidden parameters and black-box 

evaluation obstruct interpretability. For 

example:

1) 2)

- 1) Is the network buffer shallow? Does 

higher throughput necessarily indicates 

improved efficiency?

- 2) What leads Aurora to fill the buffer 

when Cubic doesn't?



What can we do?

- Evaluation methodologies of CC offer a trade-off between fidelity, flexibility, 

reproducibility and transparency
- Simulations: ++Reproducibility, - -Fidelity, ++Flexibility, ++Transparency

- Emulation: +Reproducibility, -Fidelity, +Flexibility, +Transparency

- “In the wild”: -Reproducibility, +Fidelity, -Flexibility, - -Transparency

- Challenges exacerbated by the black box nature of RL-CC

- Decision making encoded into complex parametric functions (e.g. Neural 

Networks)



Objectives and Methodology

To develop a transparent, flexible, and reproducible benchmark for RL-CC efficiency and fairness.

- Methodology: Use Mininet emulation-based evaluation framework 

- Measurement Metrics: Goodput, Congestion window sizes, srtt value, Retransmissions, Link and 

system utilization

- Several control variables:

- Base RTT of competing flows (intra/inter)

- Buffer size at the bottleneck (20%,100%, 400% the BDP)

- Bottleneck bandwidth (10Mbps to 100Mbps)

- AQM (CoDel and FQ)

- TCP Friendliness

- Transparency and reproducibility:

- Kernel config (e.g. TCP Buffers, segmentation offload)

- All experiments code, configuration and data open sourced



Protocols Under Examination: Orca & Aurora

Orca

- Hybrid approach: trained agent acts on top of 

Cubic

- Reward: based on Power (Kleinrock’s operational 

point)

- Control granularity: Coarse and fine

- Implementation: Linux kernel + application layer

- Training: on emulated environments

Aurora

- Clean-slate approach: decision making purely 

RL-based

- Reward:  linear combination of throughput, 

delay and loss

- Control granularity: Coarse

- Implementation: UDT

- Training: on custom simulator



Results



Goodput vs Retransmissions

- For small buffers, Orca’s aggressiveness can cause up to three orders of magnitude higher 

number of retransmissions than Cubic



Intra RTT Fairness

Buffer size: 20% BDP Buffer size: 400% BDPBuffer size: 100% BDP

Goodput ratio for two competing flows in a dumbbell topology. Bottleneck capacity is 100Mbps, both 

flows experience the same base RTT (shown on x-axis), buffer capacity is set to 0.2x, 1x, and 4x the 

BDP.



Under the hood



Backward compatibility 

Goodput evolution for two competing flows (one being TCP Cubic) in a dumbbell topology. 

Bottleneck capacity is 100Mbps, both flows experience the same base RTT (100ms), buffer 

capacity is set to 0.2x, 1x, and 4x the BDP.



Conclusion

- The complexities of evaluating RL-based CC algorithms have resulted in 

under-reporting limitations in existing work, particularly with regards to 

efficiency and fairness.

- We show this through a systematic study of existing RL-based CC proposals 

with transparency and reproducibility as key objectives.

- We devise a methodology and set of benchmark experiments tailored to 

examine efficiency and fairness

- We present empirical data analysing the performance of Orca and Aurora.



Thank you!



Segmentation Offloading



Delay gain
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