Reinforcement Learning-based
Congestion Control

A Systematic Evaluation of Efficiency and Fairness



Challenges Faced by Congestion Control Protocols

Congestion Control Protocols are responsible for efficient and fair distribution of network resources.
However, they face several challenges:

- Dynamic Network Conditions: The volatile nature of network parameters such as bandwidth,
delay, and loss rate requires CC protocols to adapt in real time, which is a complex task.

- Adapting to New Technologies: Emerging technologies, such as 5G or |oT devices, pose new
challenges requiring CC protocols to adapt and evolve.

- Performance in Diverse Scenarios: CC protocols must perform effectively in varied network
scenarios, like data centers, mobile networks, satellite communications, etc.



The Convergence of RL and CC

- RL-based CC optimises CC protocols by interacting with the environment and optimising a given
reward function.
- Elements:
- Reward function (throughput, delay, loss rate)
- Observable network state space (delay variation, loss rates, throughput)
- Action space (cwnd update value, transmission rate)
- Learning algorithms (PPO, DDPG)
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The Current State-of-the-Art

- RL-based approaches have seen varied implementations

- Numerous simulation-based implementations (ns-2, ns-3 models)
- Growing number of real network stack implementations (UDT, Linux Kernel)
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The Real-World Viability of RL-CC (Ignoring Computational
Complexity)

- Evaluation of methodologies of RL-CC approaches performance on real network stack
present some limitations:
- Single-flow efficiency focused
- Black-box experimental setup difficult to interpret
- Limited reproducibility



Challenges in Interpretation

. 1) 2)
- Hidden parameters and black-box

evaluation obstruct interpretability. For R
=] 5 0.9 K
example: 205 ¢ g % Orca
§ - Orca § 0.8 A —ah Aur.ora v
=L § indigo, & e o i Ry ¢
= Rem = Vivace
g 0ad O Viva:e v g 0.6 [} Cubic =
R [yt = & o o
2 v Bos >
- 1) Is the network buffer shallow? Does g2 ¥ czrer g S S N
higher throughput necessarily indicates ~ =.o{ & =7 & o > Vegas > [0
Improved effICIenCy? =0 1IBA\/er':—xt_.;Zc:i Norir‘falizedlljDzelay & 034.0 3-20Avera;g§ Nozri'onalizéasgelay |—|20 e
- 2) What |eadS AU rorato fl” the bUffer (a) Inter-Continental experiments (b) Intra-Continental experiments

when Cubic doesn't?



What can we do?

- Evaluation methodologies of CC offer a trade-off between fidelity, flexibility,

reproducibility and transparency
- Simulations: ++Reproducibility, - -Fidelity, ++Flexibility, ++Transparency
- Emulation: +Reproducibility, -Fidelity, +Flexibility, + Transparency
- “In the wild”: -Reproducibility, +Fidelity, -Flexibility, - -Transparency

- Challenges exacerbated by the black box nature of RL-CC
- Decision making encoded into complex parametric functions (e.g. Neural
Networks)



Objectives and Methodology

To develop a transparent, flexible, and reproducible benchmark for RL-CC efficiency and fairness.

- Methodology: Use Mininet emulation-based evaluation framework
- Measurement Metrics: Goodput, Congestion window sizes, srtt value, Retransmissions, Link and
system utilization
- Several control variables:
- Base RTT of competing flows (intra/inter)
- Buffer size at the bottleneck (20%,100%, 400% the BDP)
- Bottleneck bandwidth (10Mbps to 100Mbps)
- AQM (CoDel and FQ)
- TCP Friendliness
- Transparency and reproducibility:
- Kernel config (e.g. TCP Buffers, segmentation offload)
- All experiments code, configuration and data open sourced



Protocols Under Examination: Orca & Aurora

Orca Aurora

- Clean-slate approach: decision making purely
RL-based

- Hybrid approach: trained agent acts on top of

Cubic
- Reward: based on Power (Kleinrock’s operational Reward: linear combination of throughput,
point) delay and loss

- Control granularity: Coarse
Implementation: UDT
- Training: on custom simulator

- Control granularity;: Coarse and fine
- Implementation: Linux kernel + application layer
- Training: on emulated environments




Results



Goodput vs Retransmissions

- For small buffers, Orca’s aggressiveness can cause up to three orders of magnitude higher
number of retransmissions than Cubic
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Intra RTT Fairness

Goodput Ratio
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Under the hood
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Backward compatibility

0.2xBDP 1xBDP 4xBDP
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capacity is set to 0.2x, 1x, and 4x the BDP.



Conclusion

- The complexities of evaluating RL-based CC algorithms have resulted in
under-reporting limitations in existing work, particularly with regards to
efficiency and fairness.

- We show this through a systematic study of existing RL-based CC proposals
with transparency and reproducibility as key objectives.

- We devise a methodology and set of benchmark experiments tailored to
examine efficiency and fairness

- We present empirical data analysing the performance of Orca and Aurora.



Thank you!



Segmentation Offloading
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Delay gain
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