
Reduced Communication is not All You Need:

Towards High End-to-end Utility of Gradient Compression

Wenchen Han (UCL), Shay Vargaftik (VMWare Research),

Michael Mitzenmacher (Harvard), Brad Karp (UCL), Ran Ben Basat (UCL)

1

𝑔!𝑔"

𝑔"

Distributed Data Parallel Training

𝑔#

𝑔" + 𝑔!

𝑔" + 𝑔! + 𝑔#

• Multiple workers training the same model with different data.
• Periodic synchronization to aggregate the gradients (Δmodel).
• Can be achieved by all-reduce.

2

Problem: Communication Bottleneck

[1] https://github.com/amirgholami/ai_and_memory_wall
[1]

3

Gradient Compression Comes to Rescue

1 slot = 1 floating point (FP32) = 32 bits

1 slot = 1 half precision (FP16) = 	16 bits

𝑔!𝑔"
𝑔"

𝑔#
𝑔" + 𝑔!

𝑔" + 𝑔! + 𝑔#
4

Is Reduced Communication ALL We Need?

Method Reduced
communication

Throughput
speedup

End-to-end speedup

TopK [2] compression 87.5% 17% -65%

Theoretical upper bound 100% 83% 83%

• Throughput: speed to execute a round (in rounds per second).
• End-to-end utility: how much time to reach a target accuracy.

5

What Else Do We Need?

1. Choosing the correct optimization goal.

6

Choosing the correct optimization goal.

• End-to-end: time to reach a target accuracy: TTA.

7

Be
tte

r

Slower Throughput, Better Utility.

b=0.5	* b=2 b=8

Throughput 5.53 3.87 2.5

• Compression error matters.

Worse

8

Be
tte

r

*Lower b (bits per coordinate), higher compression ratio.

• Reducing compression overhead.

• Compatibility to all-reduce.

2. Better designs.

What Else Do We Need?

9

(1). High Compression Overhead

TopK b=2
Compression overhead 12.5%

• Compression overhead: the proportion of time it takes for the
computation of compression.

10

-0.3											1.1									0.4								-0.7									6.8								-3.1								-1.9								5.6															

4													7

• Inefficient TopK selection [3].
• Inefficient random memory access.

6.8 5.6
Values indices

11

(1). High Compression Overhead

(2). Incompatibility to All-reduce

• Problem: partial aggregation without increased communication.

𝑔!𝑔"

𝑔"

𝑔#

𝑔" + 𝑔!

𝑔" + 𝑔! + 𝑔#

Partial aggregation

12

6.8									5.6																										4													7

-4.5								6.2																											3													4

-4.5									13									5.6																															3												4												7

Worker 1

Values indices

Worker 2

+

(2). Incompatibility to All-reduce
Bandwidth budget: 4 slots.

13Exceeds bandwidth budget.

Our Solution: Chunked TopK (TopKC)

1	 4

TopK
select

Worker 2

1	 2
All-reduce

Worker 1

1	 3 1	 3

All-reduce
14

Our Solution: Chunked TopK (TopKC)

1	 4

TopK
select

Worker 2

1	 2
All-reduce

Worker 1

1	 3 1	 3

All-reduce

Lower computational overhead of TopK.

15

1	 4

TopK
select

Worker 2

1	 2
All-reduce

Worker 1

1	 3 1	 3

All-reduce

All-reduce compatibility because of consensus.

16

Our Solution: Chunked TopK (TopKC)

Saved communication for transmitting indices.
• Lower compression error.

17

Our Solution: Chunked TopK (TopKC)

Experimental Results
Method Compression

error
TopK (b=8) 8.65%

TopKC	(b=8) 2.80%

• Less compression overhead ✅
• All-reduce avoiding many-to-one

communication ✅
• Lower compression error ✅.

18

Conclusions

• What we need beyond reduced communication?

• Setting the end-to-end TTA as the optimization goal.

• Higher throughput by optimizing expensive components.

• Compatibility to all-reduce.

Our paper: https://arxiv.org/pdf/2407.01378

My email: wenchen.han.22@ucl.ac.uk
19

https://arxiv.org/pdf/2407.01378

References

[1] Memory Footprint and FLOPs for SOTA Models in CV/NLP/Speech.
https://github.com/amirgholami/ai_and_memory_wall
[2] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018.
Sparsified SGD with memory. Advances in neural information processing
systems 31 (2018)
[3] Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient top-k
query processing on massively parallel hardware. In Proceedings of the
2018 International Conference on Management of Data. 1557–1570

20

https://github.com/amirgholami/ai_and_memory_wall

