Reduced Communication is *not* All You Need: Towards High End-to-end Utility of Gradient Compression

Wenchen Han (UCL), Shay Vargaftik (VMWare Research),

Michael Mitzenmacher (Harvard), Brad Karp (UCL), Ran Ben Basat (UCL)

Distributed Data Parallel Training

- Multiple workers training the same model with different data.
- Periodic synchronization to aggregate the gradients (Δmodel).
- Can be achieved by all-reduce.

 $g_0 + g_1 + g_2$

Problem: Communication Bottleneck

[1] https://github.com/amirgholami/ai_and_memory_wall

Gradient Compression Comes to Rescue

1 slot = 1 floating point (FP32) = 32 bits

1 slot = 1 half precision (FP16) = 16 bits

Is Reduced Communication ALL We Need?

- Throughput: speed to execute a round (in rounds per second).
- End-to-end utility: how much time to reach a target accuracy.

Method	Reduced communication	Throughput speedup	End-to-end speedup
TopK [2] compression	87.5%	17%	-65%
Theoretical upper bound	100%	83%	83%

What Else Do We Need?

1. Choosing the correct optimization goal.

Choosing the correct optimization goal.

• End-to-end: time to reach a target accuracy: TTA.

Slower Throughput, Better Utility.

• Compression error matters.

What Else Do We Need?

2. Better designs.

- Reducing compression overhead.
- Compatibility to all-reduce.

(1). High Compression Overhead

• Compression overhead: the proportion of time it takes for the computation of compression.

ТорК	b=2
Compression overhead	12.5%

(1). High Compression Overhead

- Inefficient TopK selection [3].
- Inefficient random memory access.

(2). Incompatibility to All-reduce

• Problem: partial aggregation without increased communication.

(2). Incompatibility to All-reduce

Bandwidth budget: 4 slots.

Experimental Results

- Less compression overhead
- All-reduce avoiding many-to-one communication
- Lower compression error **V**.

Method	Compression error
TopK (b=8)	8.65%
TopKC (b=8)	2.80%

Conclusions

- What we need beyond reduced communication?
 - Setting the end-to-end TTA as the optimization goal.
 - Higher throughput by optimizing expensive components.
 - Compatibility to all-reduce.

Our paper: https://arxiv.org/pdf/2407.01378

My email: wenchen.han.22@ucl.ac.uk

References

[1] Memory Footprint and FLOPs for SOTA Models in CV/NLP/Speech. https://github.com/amirgholami/ai_and_memory_wall

[2] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified SGD with memory. Advances in neural information processing systems 31 (2018)

[3] Anil Shanbhag, Holger Pirk, and Samuel Madden. 2018. Efficient top-k query processing on massively parallel hardware. In Proceedings of the 2018 International Conference on Management of Data. 1557–1570