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• Multiple workers training the same model with different data.
• Periodic synchronization to aggregate the gradients (Δmodel).
• Can be achieved by all-reduce.
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Problem: Communication Bottleneck

[1] https://github.com/amirgholami/ai_and_memory_wall 
[1] 
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Gradient Compression Comes to Rescue

1 slot = 1 floating point (FP32)  = 32 bits

1 slot = 1 half precision (FP16)  = 	16 bits
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Is Reduced Communication ALL We Need?

Method Reduced 
communication

Throughput 
speedup

End-to-end speedup

TopK [2] compression 87.5% 17% -65%

Theoretical upper bound 100% 83% 83%

• Throughput: speed to execute a round (in rounds per second).
• End-to-end utility: how much time to reach a target accuracy.
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What Else Do We Need?

1. Choosing the correct optimization goal.
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Choosing the correct optimization goal.

• End-to-end: time to reach a target accuracy: TTA.
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Slower Throughput, Better Utility.

b=0.5	* b=2 b=8

Throughput 5.53 3.87 2.5

• Compression error matters.

Worse
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*Lower b (bits per coordinate), higher compression ratio.



• Reducing compression overhead.

• Compatibility to all-reduce.

2. Better designs.

What Else Do We Need?
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(1). High Compression Overhead

TopK b=2
Compression overhead 12.5%

• Compression overhead: the proportion of time it takes for the 
computation of compression.
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• Inefficient TopK selection [3].
• Inefficient random memory access.

6.8 5.6
Values                      indices
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(1). High Compression Overhead



(2). Incompatibility to All-reduce

• Problem: partial aggregation without increased communication.
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Partial aggregation
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Worker 1

Values                      indices

Worker 2

+

(2). Incompatibility to All-reduce
Bandwidth budget: 4 slots.

13Exceeds bandwidth budget.



Our Solution: Chunked TopK (TopKC)
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All-reduce
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Our Solution: Chunked TopK (TopKC)
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Lower computational overhead of TopK.
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All-reduce

All-reduce compatibility because of consensus.
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Our Solution: Chunked TopK (TopKC)



Saved communication for transmitting indices.
•  Lower compression error.
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Our Solution: Chunked TopK (TopKC)



Experimental Results
Method Compression 

error
TopK (b=8) 8.65%

TopKC	(b=8) 2.80%

• Less compression overhead ✅
• All-reduce avoiding many-to-one 

communication ✅
• Lower compression error ✅.
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Conclusions

• What we need beyond reduced communication?

• Setting the end-to-end TTA as the optimization goal.

• Higher throughput by optimizing expensive components.

• Compatibility to all-reduce.

Our paper: https://arxiv.org/pdf/2407.01378

My email: wenchen.han.22@ucl.ac.uk
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