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Recap

» Content Moderation on Web3
Social Media

» The Reason Behind Mutes
» Mute Localization
» Mute-list Recommendation




Content Moderation on Web3 Social Media
(memo.cash)

» memo.cash is social media built on top of Bitcoin Cash Blockchain

* Permanent and uncensorable data
 User-controlled moderation

* Individuals create publicly available mute-list
« Similar to blocking on Twitter

> Dataset

« Develop a crawler to parse web pages
« 24K users
« 317K posts
« 2M transactions
* /K mutes
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The Reason Behind Mutes

User-based Information

®
Bitcoin Transaction @ - E‘ Posted Content

Toxic/Hateful Speech @

Social Interaction

Non-Muted



The Reason Behind Mutes
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Hateful speech emerges as a less significant factor,

while users’ activeness Is the most important!
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The Reason Behind Mutes

1.01 —— Muted users

Non-muted users

» 19.6% of muted users (vs. 33.1% non-

081 muted) have a ratio > 0.8
« Suggesting higher average platform
engagement among muted users

0.61

0.4 « Muted users have a time interval of 215s (vs.
non-muted 4375s)
0.21 * 60.5% of muted (vs. 47.0% non-muted) users’
0o posts get O likes, tips, or replies
0.0 0.2 0.4 0.6 0.8 1.0

post count vs. platform activity (%)

The presence of low-quality or irrelevant content could be

a contributing factor prompting users to resort to muting




Mute Localization

» The followership network comprises 12,676
nodes and 60,809 links

« 11 main communities (Louvain Method)

» Visualization of the mute graph
* Node colour is based on the corresponding
community on the followership network
 Node size is determined by mute count

Mute graph



Mute Localization

» Massey Denton Isolation Index to define the mute localization
across communities

» Compare Real isolation index (RI) value and random
simulation index (Sl)
* 9 out of 11 communities have Rl > Sl values

* 60.9% of the mutes originate from users belonging to the same
community

Users are more inclined to mute others In
the same community!




Mute-list Recommendation

Random
Most Popular

SVvD
UserKNN
LightFM
CNNbaseline

CNN-preprocess
CNN-normalised

Personalized top-n mute list

CNNpreprocess+
normalised
Label Implication Event Count
4 Very negative feedback: User A has muted user B, and user A’s follower has done the same. 595
Additionally, user A has not liked any user B posts.
Moderately negative feedback: While user A has muted user B, their followers have not taken such action.
3 . s 1,825
Nevertheless, user A has never liked user B’s posts.
Somewhat negative feedback: User A has muted user B, and their follower has also done the same.
2 . \ 896
However, user A has liked at least one of user B’s posts.
1 Slightly negative feedback: Despite user A muting user B, user A has also liked a post by user B. 2,996




Mute-list Recommendation
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« LightFM exhibits strong performance across all e LightFM is the most suitable model
metrics, particularly in top-10 mute list scenario « 38.8% of users exhibit F1 values <0.5

* 41.4% of users display accuracy values <0.5



5. Conclusion

» Shed light on the key user’s factors impacting Web3
decentralized moderation

» Present a novel approach for recommending mutes to
empower users’ participants




Thanks for Listening!
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