Towards Operational and Security Best Practices for DNS in Ínnín_ the Internet of Things.

Anna Maria Mandalari **Andrew Losty**

Abhishek Mishra

Mathieu Cunche

Motivation 1

Evaluate the Security, Operational behavior of DNS in IoT devices.

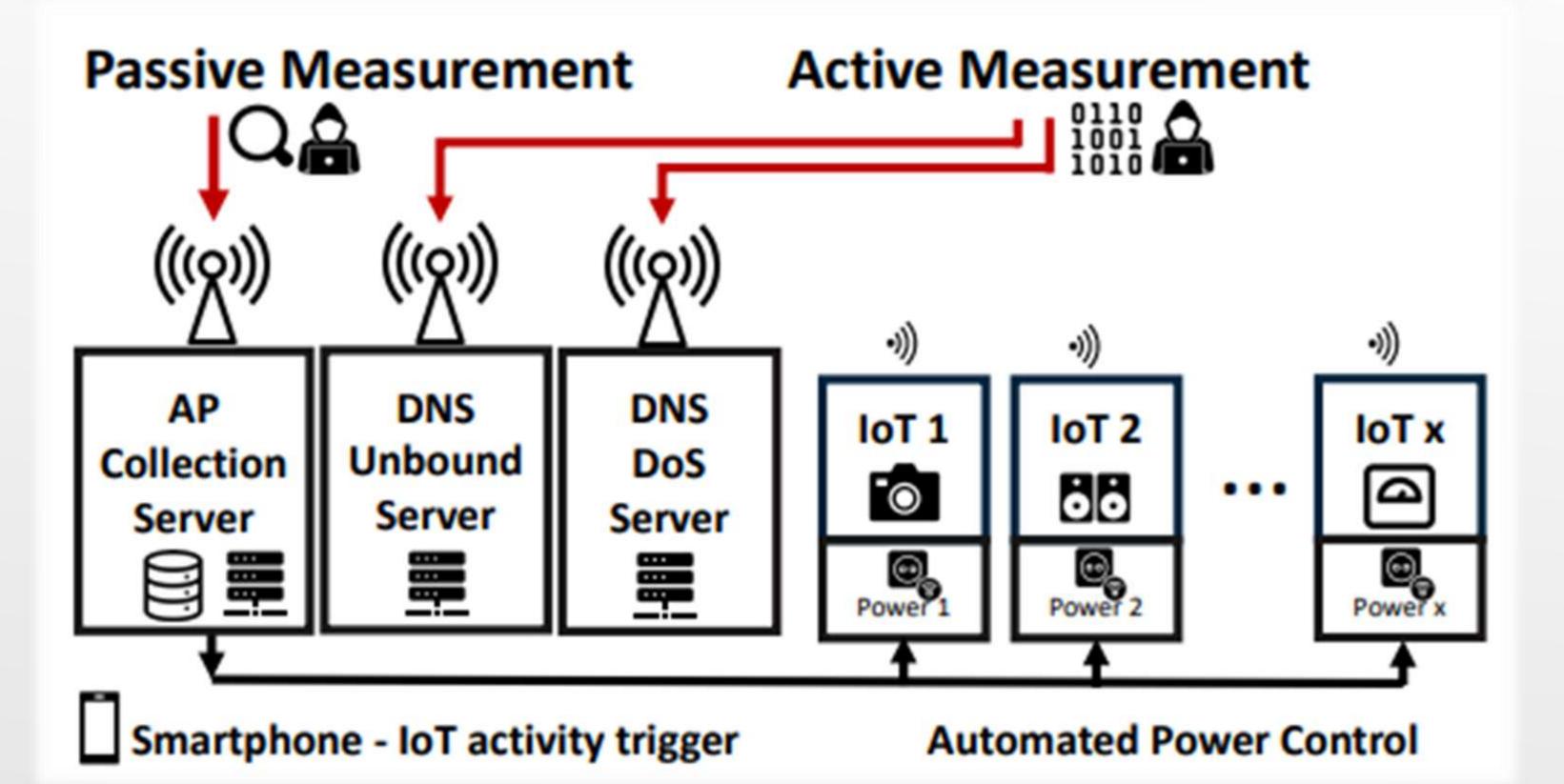
Security:	Beha
• DoH, DoT, DNSSEC,	• Devi
 Port & Transaction ID Randomization 	• TTL a
DNS Extensions	• Hard
	• IPv6
Regulatory Framework:	

Identify existing guidance

Statista reports a projected doubling of IoT devices from 19.8 billion in 2025 to over 40.6 billion by 2034.

aviour:

- ice identifiability via traffic request patterns.
- adherence, caching strategies and exponential back-off
- dcoded DNS servers
- **5** support, MDNS operation.


Motivation 2

European Telecommunications Standards Institute (ETSI)				
ETSI EN 303 645	X DNS∩loT √ DNS	ETSI TS 103 375	X DNS∩IoT X DNS	
ETSI EN 103 645	X DNS∩loT √ DNS	ETSI TS 103 701	X DNS∩IoT √ DNS	
ETSI TR 103 621	X DNS∩loT X DNS	ETSI TS 103 457	X DNS∩loT X DNS	
ETSI GR IP6 008	X DNS∩IoT X DNS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
National Institute of Standards and Technology (NIST)				
NIST SP 800-53 Rev.5	X DNS∩IoT √ DNS	NIST SP 800-53A Rev.5	X DNS∩loT √ DNS	
NIST SP 800-53B	X DNS∩loT X DNS	IOT NIST IR 8259	X DNS∩loT X DNS	
NIST Cybersecurity Framework (CSF) 2.0	X DNS∩loT X DNS	NIST IR 8425	X DNS∩loT X DNS	
NIST IR 8425A	X DNS∩IoT X DNS	NIST SP800-81r3	X DNS∩IoT X DNS	
European Union Agency for Cybersecurity (ENISA)				
Good Practices for Security of IoT	X DNS∩loT X DNS	Guidelines for Securing the IoT	X DNS∩loT X DNS	
Baseline Security Recommendations for IoT	X DNS∩IoT √ DNS			
European Commission				
Cyber Resilience Act (CRA)	X DNS∩IoT X DNS			
ISO/IEC				
ISO/IEC 30141:2024	X DNS∩loT X DNS	ISO/IEC 21823-2:2020	X DNS∩loT X DNS	
ISO/IEC 27001:2023+A1:2024	X DNS∩loT X DNS	ISO/IEC 27002:2022	X DNS∩loT √ DNS	
ISO/IEC DIS 27404:2024	X DNS∩loT X DNS	ISO/IEC TS 30149:2024	X DNS∩loT X DNS	
ISO/IEC 30161-2:2023	X DNS∩loT X DNS	ISO/IEC TR 30164:2020	X DNS∩loT X DNS	
ISO/IEC 29192-8:2022	X DNS∩IoT X DNS			
ITU-T				
ITU-T Y.4806	X DNS∩loT X DNS	ITU-T Y.4807	X DNS∩loT X DNS	
ITU-T Y.4808	X DNS∩loT X DNS	ITU-T Y.4809	X DNS∩loT X DNS	
ITU-T Y.4810	X DNS∩IoT X DNS	ITU-T Y.4811	X DNS∩loT X DNS	
Internet Engineering Task Force (IETF) DNS RFCs				
RFC 1034	X DNS∩loT √ DNS	RFC 1035	X DNS∩loT √ DNS	
RFC 8484	X DNS∩loT √ DNS	RFC 7858	X DNS∩loT √ DNS	
Institute of Electrical and Electronics Engineers (IEEE)				
IEEE 2413-2019	X DNS∩loT X DNS			

Evaluate existing Regulatory Framework

Test environment

30+ Consumer IoT devices categorized as: Cameras, Doorbells, Smart Plugs, Hubs, Speakers, Sensors, Lights, Appliances, Health, and Pet Care.

DNS Unbound Server: (Active experiments Crafted DNS responses, TTL, RR)

DNS DoS Server: (Active experiments DNS Amplification and RR duplication)

Collection Server: (Passive Data collection)

4

DNS RFCs

Fundamentals

RFC 1034 – DNS Concepts RFC 1035 – DNS Implementation RFC 2181 – Specification Clarifications RFC 2308 – Negative Caching RFC 2671 – EDNS(0) RFC 6891 – EDNS(0) Update RFC 3596 – IPv6 AAAA Records RFC 8499 – DNS Terminology

Operational

RFC 1912 – Config Best Practices RFC 1033 – DNS Admin Guide RFC 9210 – DNS over TCP RFC 7766 – TCP Best Practices RFC 7871 – Client Subnet (ECS) RFC 8767 – Serve Stale Data RFC 8906 – DNS Terminology Updates

rfc-editor.org - title/ keyword identifies 345 current – retired DNS RFCs

Security (DNSSEC)

- RFC 4033 DNSSEC Overview
- RFC 4034 DNSSEC Records
- RFC 4035 Protocol Changes
- RFC 5155 NSEC3
- RFC 5452 TXID Randomization
- RFC 8624 Algorithm Requirements
- RFC 5011 Trust Anchor Rollover
- RFC 4032 Deployment Roadmap

Encrypted Transport

- RFC 7858 DNS over TLS
- RFC 8484 DNS over HTTPS
- RFC 9250 DNS over QUIC

Lack of Secure Protocols

VSpoofing / Cache Poisoning Protection (Client) • RFC 5452 – Port & TXID Randomization

DNSSEC: Authenticated Responses (Resolver)

- RFC 2671 EDNS0 Extension
- RFC 6891 EDNS0 Update (enables DNSSEC)
- RFC 4033 DNSSEC Overview
- RFC 4034 Security Records (DNSKEY, RRSIG)
- RFC 4035 Protocol Changes
- RFC 8624 Algorithm Guidance

Encrypted DNS Transport (Client)

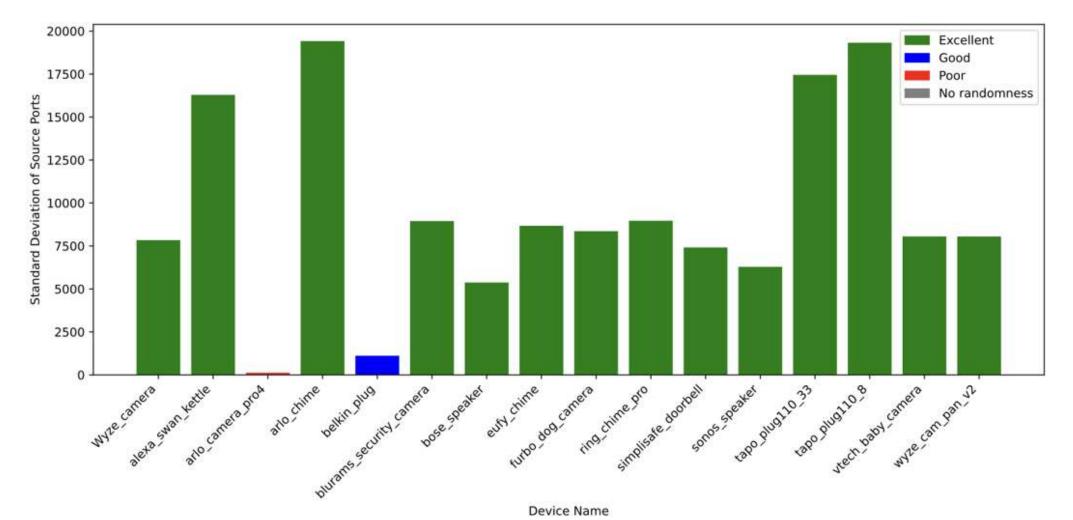
- RFC 7858 DNS over TLS (DoT) (853)
- RFC 8484 DNS over HTTPS (DoH) (443)
- RFC 9250 DNS over QUIC (DoQ)

None of the 30 IoT devices evaluated supported Secure DNS protocols or EDNS(0).

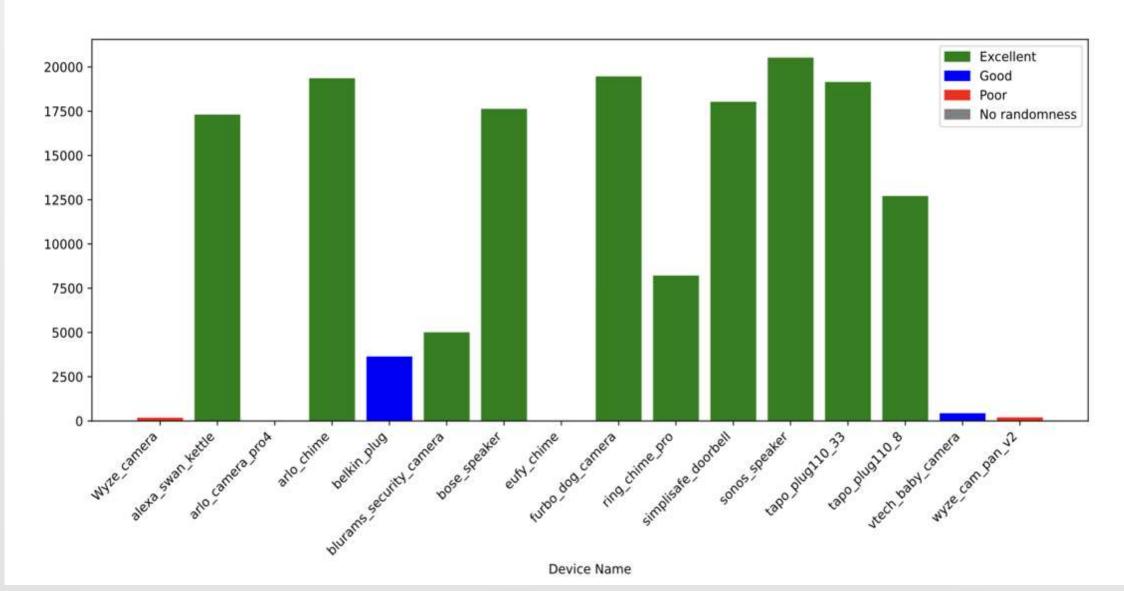
Extension mechanism for DNS - EDNS(0)

Observed Issue

- Non of the IoT devices support EDNS(0).
- Failure to support DNS UDP payloads >512B •


Security Risks / Operational behavior

- **Possible evasion + mishandling of fragments by security devices**
- **DNS amplification** via fragmented responses (RFC 8195) (DNS Privacy Considerations) \bullet
- **Devices fail to switch to TCP for large payloads**.

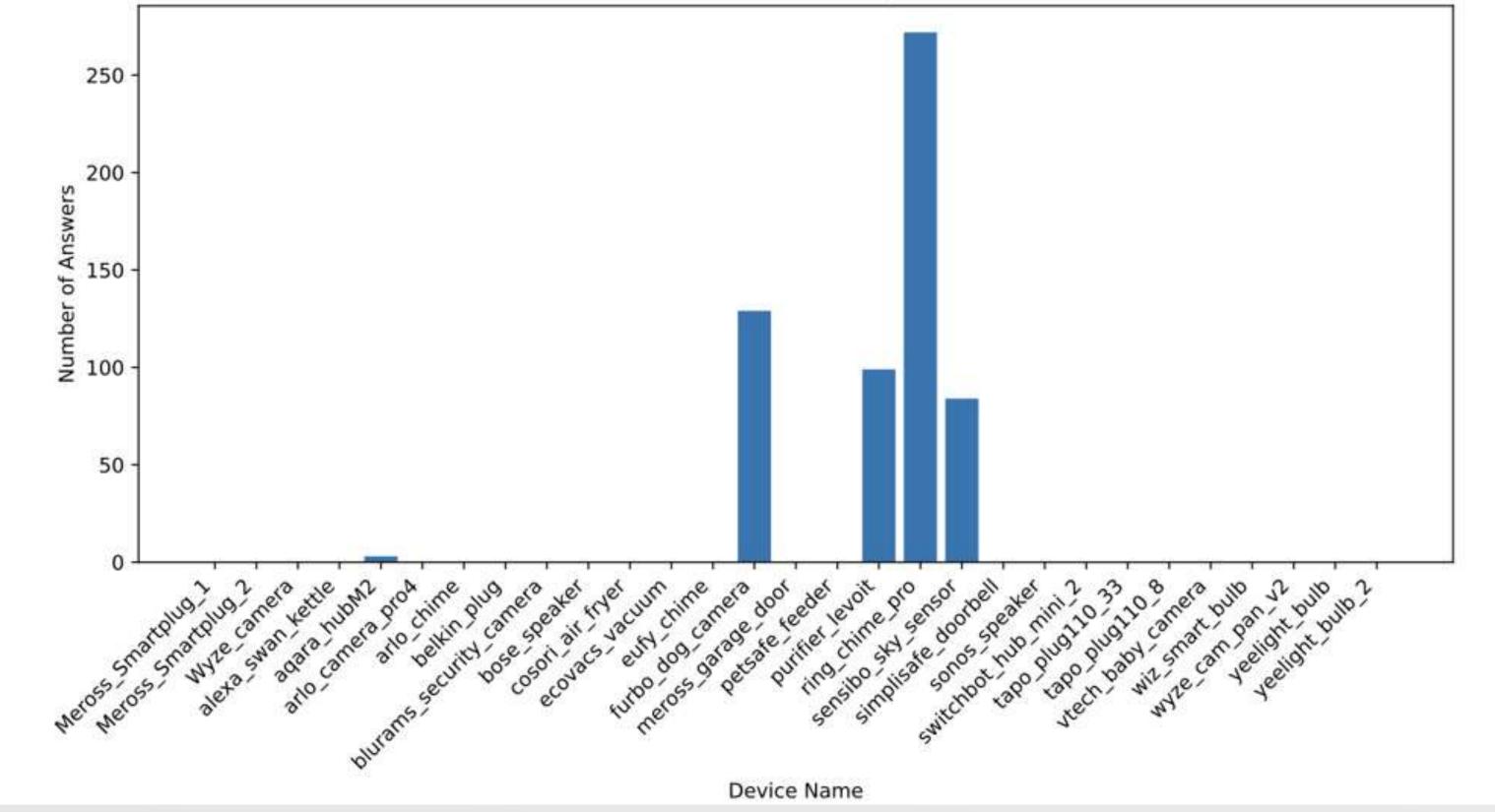

IoT Device fragment at the IP layer rather than using TCP

Source Port + Transaction-ID

Source-Port Randomization

Transaction ID Randomization


Observed Issue

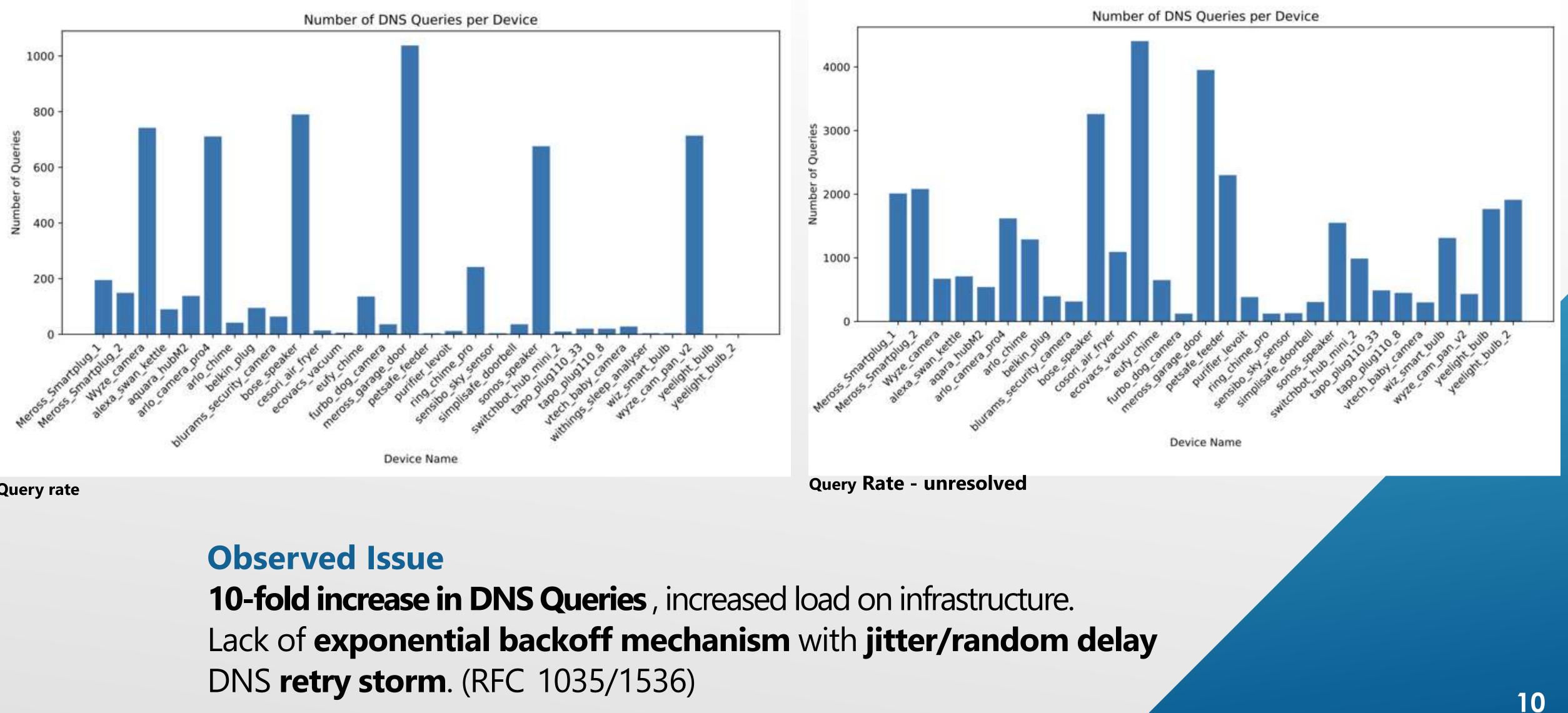

Devices fail to randomize Source-Ports/Transaction IDs as defined, RFC 5452 (2009)

Devices susceptible to Cache Poisoning

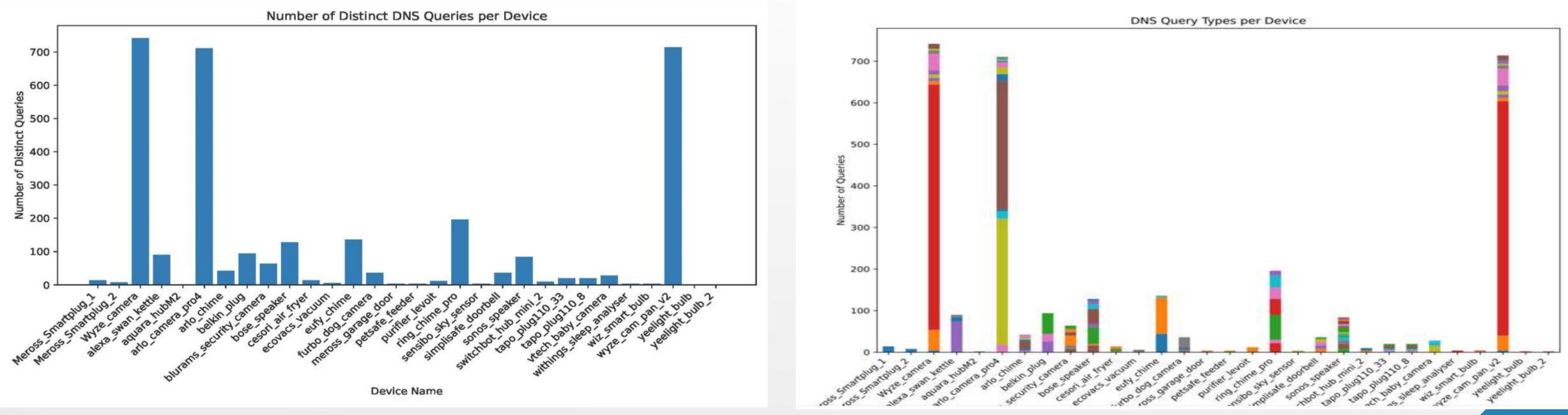
DNS – Hardcoded Server Addresses

Use of Hard-coded DNS servers

Observed Issue


Devices ignore DHCP - use hard-coded DNS.

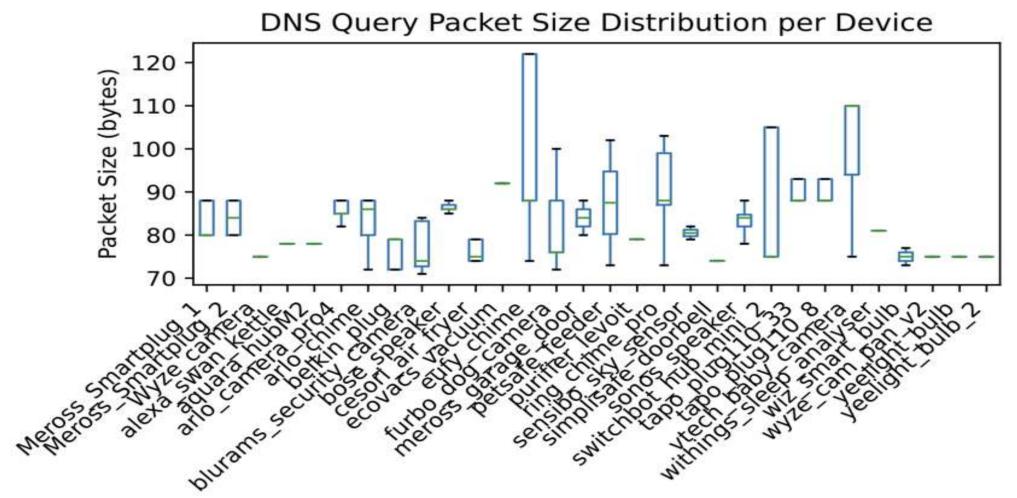
Devices Bypass inspection Breach of policy Reduction in resilience Data leak - 3rd parties



DNS – High Retry Rate

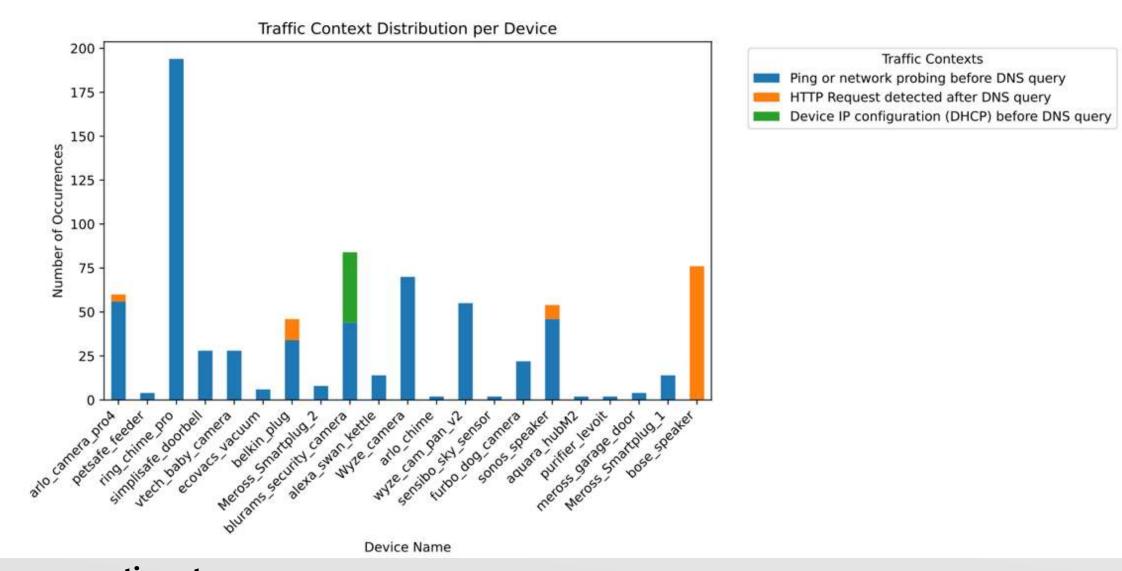
Query rate

DNS – High Number Sites contacted


Unique destinations

Observed Issue High number of destinations for operational connections. Difficult to monitor, filter, control, more complex firewall rules

Unique destinations frequency

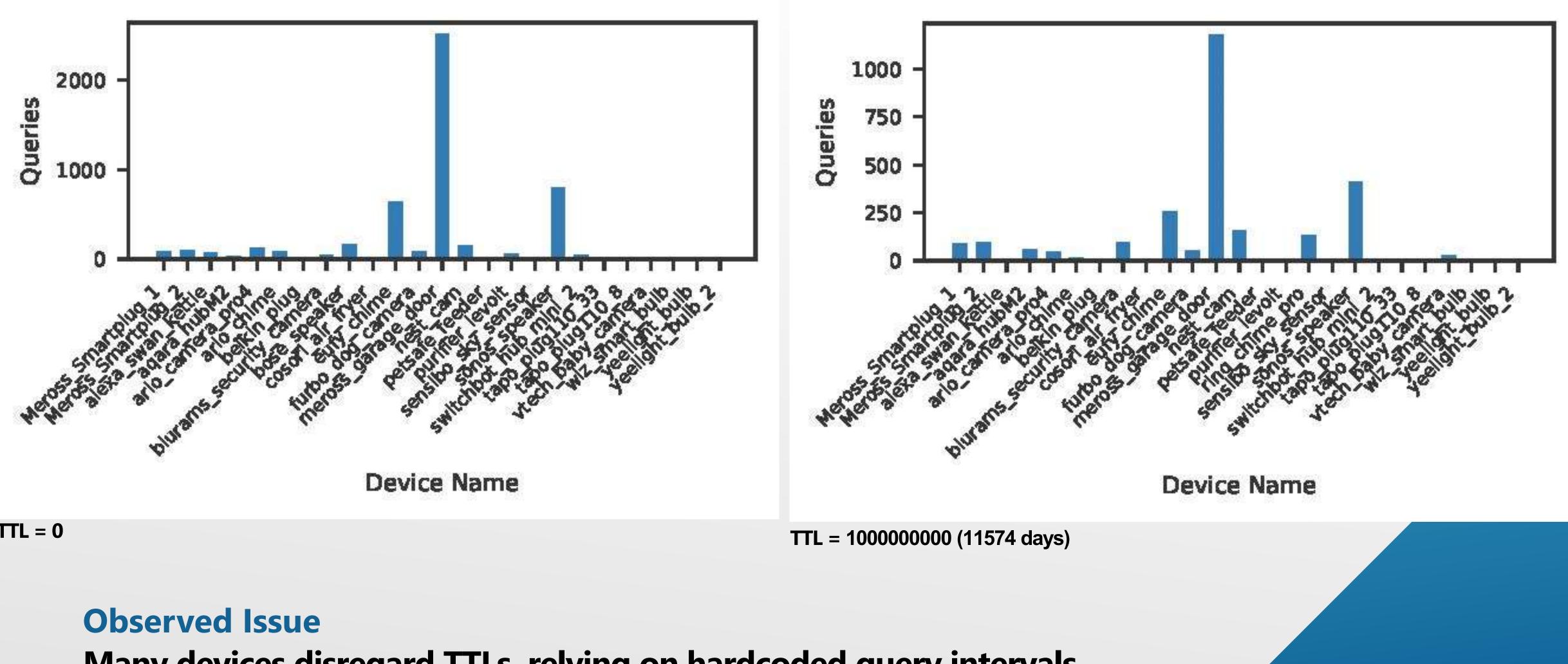

11

DNS – Device Identification

Device Name

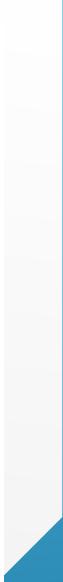
Query packet size

Precursor actions to query


Observed Issue

Highly "fingerprintable" DNS requests with precursor actions by device.

Device and model identification possible: smart locks, cameras, Correlate patterns, Track the device or user over time


DNS IOT – TTL

TTL = 0

Many devices disregard TTLs, relying on hardcoded query intervals.

While TTL manipulation has little effect, zero TTLs can induce query amplification in some cases.

DNS IoT – **RR Injection**

values

IP 192.0.2.1 (non routable reserved IP address) **Response = A Record Response = AAAA Record IP 2001:db8:1** (non routable reserved IP address) **Response = CNAME Record example.com** (reserved domain name)

Observed Issue

Multiple devices accept manipulated responses – with reserved non-routable content. No validation of IPs and domains - Devices vulnerable to manipulation and redirection.

Active experiment to evaluate resilience to Inject RR values by altering domain/IP

DNS IoT – Amplification and Multi-RR Response

Observed Issue

Good resilience with only 1 device (Qardiobase Scale) experienced a loss of wireless connectivity at highest amplification.

Active experiment to subject IoT devices subject to "oversize" payloads by increasing the number of A records in each DNS response. Replication ratios of 10, 50, and 100, exceed > 512-byte limit.

Observed Issue

7 device (23%) suffered a loss of connectivity as they maintain UDP transport and fragment at the IP layer, rather than setting the TC (truncation) flag and transition to TCP.

Active experiment to evaluate effect on IoT devices subject to DNS amplification attacks, amplification ratios of 10, 50, and 100 relative to their original queries.

Findings Overview

Device	Secure Standards	Source Port	Transaction ID	Query	Modified RR	Forged TTL	DoS
Arlo Camera Pro	X	×	\checkmark	×	×	\checkmark	X
Blurams Security Camera	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
Furbo 360 Dog Camera	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Google Nest Cam (Wired)	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Vtech baby camera	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Wyze Cam Pan v3	×	\checkmark	×	X	\checkmark	\checkmark	\checkmark
Wyze camera	×	\checkmark	×	X	\checkmark	\checkmark	\checkmark
Yi Home Camera	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Qardiobase scale	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
Withings sleep analyser	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aqara Hub M2	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cosori Airfrier CS158	×	×	\checkmark	\checkmark	×	\checkmark	X
covacs vacuum Deepbot	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
eVoit Air Purifier Classic	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aeross Door Opener	×	\checkmark	\checkmark	\checkmark	\checkmark	X	\checkmark
etsafe Automatic Feeder	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
ensibo Sky	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
wan Alexa Kettle	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
witchbot hub mini 2	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Viz Smart Bulb A.E27	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
eelight smart led bulb 1+2	×	\checkmark	\checkmark	\checkmark	X	\checkmark	X
apo Smartplug P110 (8+33)	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Selkin Plug	×	\checkmark	\checkmark	×	\checkmark	\checkmark	X
Neross Smartplug 1 +2	×	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark
onos One Speaker	×	\checkmark	\checkmark	\checkmark	×	X	\checkmark
ose Home Speaker 500	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Arlo Chime Doorbell	X	\checkmark	\checkmark	\checkmark	X	\checkmark	\checkmark
ufy Chime	×	×	×	×	\checkmark	X	\checkmark
ing Chime Pro TV	X	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
Ring Doorbell	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Simplisafe Doorbell	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

(Results to be used to develop IETF RFC - DNS best practices for IoT)

Contact / Information

Follow us: <u>https://safenetiot.github.io/</u> <u>https://www.youtube.com/watch?v=0fg0acuRbUA</u>

UCL-IoT DNS Experiments and Results https://github.com/SafeNetIoT/DNS_priv_sec/tree/main/UCL-IoT

Contact: andrew.losty.23@ucl.ac.uk

