
Remote TCP Connection Offload with XO

Shuo Li*, Steven W.D. Chien*, Tianyi Gao, Michio Honda
University of Edinburgh

Coseners 2025

TCP in Scale-out Systems

● TCP is (still) dominant in the cloud
○ OS enhancements (zero-copy, I/O batching etc)
○ NIC offloading

■ Segmentation offload
■ TLS offload

● TCP servers constitute Scale-out System

Server

TLS/TCP

Client

L7LB in Scale-out Systems

● A scale-out system
○ Higher service throughput with a load balancer
○ Higher storage capacity with a storage gateway

● Layer 7 Proxy (L7P)
○ terminate a client connection
○ select a server
○ relay data between the client and server

Server

TLS/TCP

Client

Server

Server

L7P

Relay app data

● Ceph study
● Bandwidth bottleneck
● CPU bottleneck
● Underutilizes server resources

L7P Introduces Bottenecks

OSD OSD
OSD

GW
OSD

100 Gbps

25 Gbps

Existing Solutions

Connection Migration
(Prism [NSDI’21] & Capybara [ApSys’23])

Server ServerL7P

Conn Conn

Server ServerL7P

Conn ConnConn

● Pros
○ Offload data relay to the kernel or

NIC
● Cons

○ Static L7P-server binding

● Pros
○ Bypass the app-level data relay

● Cons
○ Need programmable switch
○ Servers must be in the same rack

Connection Splicing
(AccelTCP [NSDI’20])

● TCP connection migration without programmable switch

XO Approach

Server ServerL7P

(1) Request

Conn

● TCP connection migration without programmable switch
○ Connection migration (although challenging or new protocol, see later) as usual

XO Approach

Server ServerL7P

Conn ConnConn

(2) Req. & conn. state

(1) Request(3) Response

● TCP connection migration without programmable switch
○ Connection migration (although challenging or new protocol, see later) as usual
○ Flow-granularity packet redirection at the host

XO Approach

Server ServerL7P

ConnConn
(5) Packet redirection

(4) Next request(6) Response

● TCP connection migration without programmable switch
○ Connection migration (although challenging or new protocol, see later) as usual
○ Flow-granularity packet redirection at the host

● Host-based redirection is not as efficient as switch-based redirection

XO Approach

Server ServerL7P

ConnConn
(5) Packet redirection

(4) Next request(6) Response

● TCP connection migration without programmable switch
○ Connection migration (although challenging or new protocol, see later) as usual
○ Flow-granularity packet redirection at the host

● Host-based redirection is not as efficient as switch-based redirection
● NIC offloading (redirection behind the PCIe bus)

○ tc-flower

XO Approach

Server ServerL7P

ConnConn
(5) in-NIC packet
redirection

(4) Next request(6) Response

NIC

XO Building Blocks

● New connection handoff protocol for robust host-based TCP
connection migration

● New HW-SW hybrid packet redirection for efficient use of hw-
based packet redirection

● A User space queue to manage rule insertion/deletion commands

XO Building Blocks

● New connection handoff protocol for robust host-based TCP
connection migration

● New HW-SW hybrid packet redirection for efficient use of hw-based
packet redirection

● A User queue to manage rule insertion/deletion commands

Host-based TCP connection handoff

● Many non-atomic operations
○ TCP/TLS connection serialization (many syscalls)

○ NIC configuration (many syscalls and device configuration)

○ Inter-host signalling (many RPCs)

● Ingress and egress packets during those operations break the

connection

Server ServerL7P

NICNIC

ConnConn

Connection is gone, but NIC
configuration is not done yet

RST

XO
Handoff Protocol

HTTP GET

TCP+TLS handshake
Client L7P Server

HANDOFF RPC

Block flow

Serialize TCP + TLS state

Deserialize TCP + TLS state

READY RPC

Insert redirection rule

Insert src rewrite rule

HTTP OK

HTTP GET

Block flow

Serialize TCP + TLS state

HANDOFF RPC

Deserialize TCP + TLS state

Remove redirection rule

END RPC

Remove src rewrite & unblock flow

Unblock flow
READY RPC

● To avoid failure
triggered by packet
leaking

XO Building Blocks

● New connection handoff protocol for robust host-based TCP
connection migration

● New HW-SW hybrid packet redirection for efficient use of hw-
based packet redirection

● A User space queue to manage rule insertion/deletion commands

HW-SW Performance Tradeoff

● What packet redirection

method should we use?

User

Kernel

Hardware

App

TC-SW eBPF

TC Flower Offload
to NIC

HW-SW Performance Tradeoff

● What packet redirection

method should we use?

User

Kernel

Hardware

App

TC-SW eBPF

TC Flower Offload
to NIC

● eBPF rule is fast to install but no offload

● TC’s forwarding is much faster

Operation (μs) Rate (Mpps) Latency (μs)

Insert Remove 64B 1500B 64B 1500B

eBPF (tc) 4.01 3.77 0.79 0.78 21.06 22.42

eBPF (XDP) 38.31 7.41 6.65 2.07 16.52 18.45

TC (CX5) 476 404 33.01 2.07 8.26 9.89

TC (CX7) 2143 1134 33.08 2.07 8.41 9.97

TC (Agilio) 68 65 22.12 2.07 19.77 20.58

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

Asynchronous

Synchronous

redirecting

rule inserting

rule inserted

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

TC-hw

Asynchronous

Synchronous

redirecting

rule inserting

rule inserted

rule inserting

Use eBPF-based redirection until the HW one is activated

HW-SW Hybrid Packet Redirection

Redirection Rule

eBPF

TC-hw

eBPF

TC-hwTC-hw rule insertion

completed

Asynchronous

Synchronous

redirecting

redirecting

rule inserting

rule inserted

rule inserting rule inserted

Use eBPF-based redirection until the HW one is activated

XO Building Blocks

● New connection handoff protocol for robust host-based TCP
connection migration

● New HW-SW hybrid packet redirection for efficient use of hw-based
packet redirection

● A User space queue to manage rule insertion/deletion commands

User space queue

● Observation
○ Rule insertion/deletion commands create

backlog on the kernel over locks
● Problem

○ Latency unpredictability
○ Unnecessary command execution

● Solution
○ Moving the queue to the user space

■ Bounded command latency
■ Execution cancellation when no longer needed

Experiment Setup

● 6-machine cluster
○ 1 client connects to a switch over 100Gbps link
○ 1 frontend with 25Gbps NICs

■ NVIDIA/Mellanox ConnectX-5
■ Netronome Agilio

○ 4 backends with 25Gbps NICs

Best CaseWorst Case

Real World Application Integration

NGINX & Ceph

NGINX

Link Speed

Imbalance

Ceph

17% better with hybrid rule insertion

Skew
Balanced

Summary

● XO: Combining L4LB efficiency with L7LB flexibility
○ Support both replicated servers (e.g., nginx) and shareded servers (e.g.,

ceph)
○ Hardware-software hybrid traffic steering using commodity NIC features
○ First connection-migration-based approach integrated with real

applications (nginx and Ceph)

Thanks!

	Slide 1: Remote TCP Connection Offload with XO
	Slide 2: TCP in Scale-out Systems
	Slide 3: L7LB in Scale-out Systems
	Slide 4: L7P Introduces Bottenecks
	Slide 5: Existing Solutions
	Slide 6: XO Approach
	Slide 7: XO Approach
	Slide 8: XO Approach
	Slide 9: XO Approach
	Slide 10: XO Approach
	Slide 11: XO Building Blocks
	Slide 12: XO Building Blocks
	Slide 13: Host-based TCP connection handoff
	Slide 14: XO Handoff Protocol
	Slide 15: XO Building Blocks
	Slide 16: HW-SW Performance Tradeoff
	Slide 17: HW-SW Performance Tradeoff
	Slide 18: HW-SW Hybrid Packet Redirection
	Slide 19: HW-SW Hybrid Packet Redirection
	Slide 20: HW-SW Hybrid Packet Redirection
	Slide 21: XO Building Blocks
	Slide 22: User space queue
	Slide 23: Experiment Setup
	Slide 24
	Slide 25: Real World Application Integration
	Slide 26: NGINX
	Slide 27
	Slide 28: Ceph
	Slide 29
	Slide 30: Summary

