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Background: Datacenter transport status quo
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● Multi tenancy
● Third-party network/hardware/software on the path

Datacenters need end-to-end encryption



● Head-of-line blocking avoidance [1]
○ Unordered message delivery

● In-network compute (INC) support [2]
○ e.g., Per-message load balancing
○ Network needs message-level buffering

with bounded time
● In-host load balancing [1]

○ Flow-based CPU core affinity creates CPU 
hotspots 

Datacenter transports need message abstraction

[1] Homa/Linux (ATC’21) [2] MTP (NSDI’25)

Efficient RPC (request-response) support is essential
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In-order bytestream is unfit

Efficient RPC (request-response) support is essential



Design space

● Crypto offload with commodity NICs
○ No compromise from TLS/TCP

● Native transport
○ Flexible protocol design and easy network management 



● It works for non-TCP!

Key question - can we use existing TLS offload?

● Autonomous offload [1] (NVIDIA ConnectX-6/7)
○ Mainstream today
○ Likely similar architecture in Fungible (Microsoft) and Netronome NICs

IP hdr (proto != TCP)
“TCP” hdr

[1] Pismenny et al, ASPLOS’21  [2] https://docs.kernel.org/networking/tls-offload.html

Encryption and TSO

enc. enc. enc.



SDP overview

● One-to-many style socket
○ fd = socket(SOCK_DGRAM, IPPROTO_HOMA) // but reliable

setsockopt(fd, key) // key handshake already performed, like kTLS

sendmsg(fd, msg, dst) // or io_uring_prep_sendto(sqe, fd, msg, dst)

● Transport-level encryption
○ Transport protocol must be 

aware of encryption, unlike TLS

● Opportunistic HW offload
● Optional 0-RTT handshake
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● ~2800 LoC change in Homa/Linux
● ~300 LoC change in the mlx5 driver
● Support Linux 6.2 and 6.6



Two-level segmentation
● An app message can consist of multiple TSO segments

○ Example below: one app message over two TSO segments
● A TSO segment can consist of multiple packets

In-msg framing headers (FH)
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Per-message record sequence number space
● Granularity of parallelism

○ TCP (Connection-level) - strict in-order delivery
○ SDP (Message-level) - out-order delivery at both message level and segment level

■ A later message or segment in message can received earlier 
■ Global incrementing record sequence number no longer work

WireApp

Message 2
Message 1

Message 0

Message 0
Rec Index 1
Rec Seq 0,1

Solution: a record sequence number that integrates 
a message ID with an intra-message record index

Message 2
Rec Index 0
Rec Seq 2,0

Message 0
Rec Index 0
Rec Sqe 0,0

Message 1
Rec Index 0
Rec Seq 1,0

48-bits for Msg ID
16-bits for 

Record Index

<----------- 64-bits Record Sequence Number field ---------->



Per-message record sequence number space
● Messages can reuse one hardware crypto engine by sharing the record sequence 

number
● Different messages can be sent and received independently with 48-bits Message ID
● Unique record sequence number for all records across and inside messages to prevent 

replay attack

WireApp

Message 2
Message 1

Message 0

Message 0
Rec Index 1
Rec Seq 0,1

Solution: a record sequence number that integrates 
a message ID with an intra-message record index

Message 2
Rec Index 0
Rec Seq 2,0

Message 0
Rec Index 0
Rec Sqe 0,0

Message 1
Rec Index 0
Rec Seq 1,0

48-bits for Msg ID
16-bits for 

Record Index

<----------- 64-bits Record Sequence Number field ---------->



Unloaded latency

● SDP outperforms kTLS by 21–32% with hw offload and 16–35% without it
○ Homa is faster than TCP by 5–35 %



Redis throughput

● SDP outperforms kTLS by 5–13 % with TLS offload and 8–17 % without it

Workload A: Update heavy
Workload C: Read only



Implications

Trammell, B. et al., (2014). Evolving transport in the Internet. 
IEEE Internet Computing, 18(5), 60-64.

● Opportunity for (proper) evolution of transport in datacenters
○ Internet: TCP-as-a-substrate philosophy for middleboxes
○ Datacenter transports can still evolve

● Is Homa/Linux a right basis?
○ Generic and documented enough for abstraction, 

packet format, and reasonable performance to 
build other receiver-driven protocols



Thank you!
Any questions?
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