
Transport-level encryption for
datacenter networks

Tianyi Gao, Xinshu Ma, Suhas Narreddy,
Eugenio Luo, Steven Chien, Michio Honda

University of Edinburgh

3rd July 2025
Coseners 2025 (The 37th Multi-Service Networks workshop)

Background: Datacenter transport status quo

Linux

Simulator/
DPDK

HW

pHost [2]/dcPIM [3]

/NDP [4]/Homa [5]

2015-

DCTCP [1]

2010-

Homa/Linux [6]

EQDS [7]

2020-

[1] Alizadeh et al, SIGCOMM’10 [2] Gao et al, CoNEXT’15 [3] Cai et al, SIGCOMM’22 [4] Handley et a l,
SIGCOMM’17 [5] Montazeri et al, SIGCOMM’18 [6] Ousterhout et al, ATC’21 [7] Olteanu et al, NSDI’22

Falcon

● Multi tenancy
● Third-party network/hardware/software on the path

Datacenters need end-to-end encryption

● Head-of-line blocking avoidance [1]
○ Unordered message delivery

● In-network compute (INC) support [2]
○ e.g., Per-message load balancing
○ Network needs message-level buffering

with bounded time
● In-host load balancing [1]

○ Flow-based CPU core affinity creates CPU
hotspots

Datacenter transports need message abstraction

[1] Homa/Linux (ATC’21) [2] MTP (NSDI’25)

Efficient RPC (request-response) support is essential

● Head-of-line blocking avoidance [1]
○ Unordered message delivery

● In-network compute (INC) support [2]
○ e.g., Per-message load balancing
○ Network needs message-level buffering

with bounded time
● In-host load balancing [1]

○ Flow-based CPU core affinity creates CPU
hotspots

Datacenter transports need message abstraction

Connection

Msg1Msg2

App

Msg1Msg2

App

[1] Homa/Linux (ATC’21) [2] MTP (NSDI’25)

In-order bytestream is unfit

Efficient RPC (request-response) support is essential

Design space

● Crypto offload with commodity NICs
○ No compromise from TLS/TCP

● Native transport
○ Flexible protocol design and easy network management

● It works for non-TCP!

Key question - can we use existing TLS offload?

● Autonomous offload [1] (NVIDIA ConnectX-6/7)
○ Mainstream today
○ Likely similar architecture in Fungible (Microsoft) and Netronome NICs

IP hdr (proto != TCP)
“TCP” hdr

[1] Pismenny et al, ASPLOS’21 [2] https://docs.kernel.org/networking/tls-offload.html

Encryption and TSO

enc. enc. enc.

SDP overview

● One-to-many style socket
○ fd = socket(SOCK_DGRAM, IPPROTO_HOMA) // but reliable

setsockopt(fd, key) // key handshake already performed, like kTLS

sendmsg(fd, msg, dst) // or io_uring_prep_sendto(sqe, fd, msg, dst)

● Transport-level encryption
○ Transport protocol must be

aware of encryption, unlike TLS

● Opportunistic HW offload
● Optional 0-RTT handshake

Msg-trans-
port

Encryption
management

IP

user
kernel

App

SDP

● ~2800 LoC change in Homa/Linux
● ~300 LoC change in the mlx5 driver
● Support Linux 6.2 and 6.6

Two-level segmentation
● An app message can consist of multiple TSO segments

○ Example below: one app message over two TSO segments
● A TSO segment can consist of multiple packets

In-msg framing headers (FH)

Encryption
and TSO

IP hdr (proto != TCP)
“TCP” hdr
TLS hdr

TLS auth

enc

enc

enc

enc

enc

encPackets

enc

IPID

encEncrypted
TSO segments

TLS Rec Seq

TSO segments

FH

App message

Per-message record sequence number space
● Granularity of parallelism

○ TCP (Connection-level) - strict in-order delivery
○ SDP (Message-level) - out-order delivery at both message level and segment level

■ A later message or segment in message can received earlier
■ Global incrementing record sequence number no longer work

WireApp

Message 2
Message 1

Message 0

Message 0
Rec Index 1
Rec Seq 0,1

Solution: a record sequence number that integrates
a message ID with an intra-message record index

Message 2
Rec Index 0
Rec Seq 2,0

Message 0
Rec Index 0
Rec Sqe 0,0

Message 1
Rec Index 0
Rec Seq 1,0

48-bits for Msg ID
16-bits for

Record Index

<----------- 64-bits Record Sequence Number field ---------->

Per-message record sequence number space
● Messages can reuse one hardware crypto engine by sharing the record sequence

number
● Different messages can be sent and received independently with 48-bits Message ID
● Unique record sequence number for all records across and inside messages to prevent

replay attack

WireApp

Message 2
Message 1

Message 0

Message 0
Rec Index 1
Rec Seq 0,1

Solution: a record sequence number that integrates
a message ID with an intra-message record index

Message 2
Rec Index 0
Rec Seq 2,0

Message 0
Rec Index 0
Rec Sqe 0,0

Message 1
Rec Index 0
Rec Seq 1,0

48-bits for Msg ID
16-bits for

Record Index

<----------- 64-bits Record Sequence Number field ---------->

Unloaded latency

● SDP outperforms kTLS by 21–32% with hw offload and 16–35% without it
○ Homa is faster than TCP by 5–35 %

Redis throughput

● SDP outperforms kTLS by 5–13 % with TLS offload and 8–17 % without it

Workload A: Update heavy
Workload C: Read only

Implications

Trammell, B. et al., (2014). Evolving transport in the Internet.
IEEE Internet Computing, 18(5), 60-64.

● Opportunity for (proper) evolution of transport in datacenters
○ Internet: TCP-as-a-substrate philosophy for middleboxes
○ Datacenter transports can still evolve

● Is Homa/Linux a right basis?
○ Generic and documented enough for abstraction,

packet format, and reasonable performance to
build other receiver-driven protocols

Thank you!
Any questions?

	Slide 1: Transport-level encryption for datacenter networks
	Slide 2: Background: Datacenter transport status quo
	Slide 3: Datacenters need end-to-end encryption
	Slide 4: Datacenter transports need message abstraction
	Slide 5: Datacenter transports need message abstraction
	Slide 6: Design space
	Slide 7: Key question - can we use existing TLS offload?
	Slide 8: SDP overview
	Slide 9: Two-level segmentation
	Slide 10: Per-message record sequence number space
	Slide 11: Per-message record sequence number space
	Slide 13: Unloaded latency
	Slide 14: Redis throughput
	Slide 15: Implications
	Slide 16: Thank you! Any questions?

