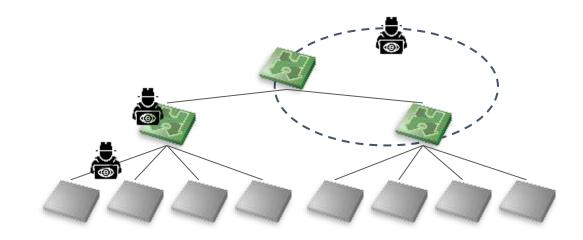
Transport-level encryption for datacenter networks

Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven Chien, Michio Honda

University of Edinburgh

3rd July 2025 Coseners 2025 (The 37th Multi-Service Networks workshop)

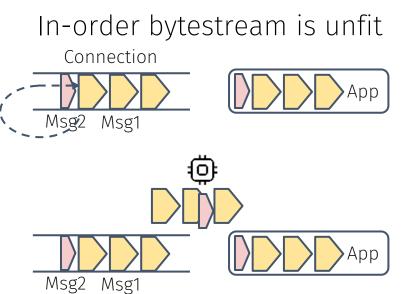


Background: Datacenter transport status quo

Datacenters need end-to-end encryption

- Multi tenancy
- Third-party network/hardware/software on the path

Datacenter transports need message abstraction


Efficient RPC (request-response) support is essential

- Head-of-line blocking avoidance [1]
 Onordered message delivery
- In-network compute (INC) support [2]
 - e.g., Per-message load balancing
 - Network needs message-level buffering with bounded time
- In-host load balancing [1]
 - Flow-based CPU core affinity creates CPU hotspots

Datacenter transports need message abstraction

Efficient RPC (request-response) support is essential

- Head-of-line blocking avoidance [1]
 Onordered message delivery
- In-network compute (INC) support [2]
 - $\circ~$ e.g., Per-message load balancing
 - Network needs message-level buffering with bounded time
- In-host load balancing [1]
 - Flow-based CPU core affinity creates CPU hotspots

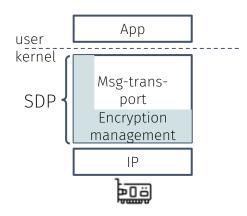
Design space

Encrypt.	Abstract.	Offload	Protocol	Parallelism	
FcpCrypt	Stream	N	TCP	Conn.	
TLS	Stream	N	UDP	Conn.	
TLS	Stream	TSO	TCP	Conn.	
TLS	Stream	Crypto+TSO	TCP	Conn.	
TLS	Msg.	Crypto+TSO	New	Msg.	
l] - (Msg.	TSO	New	Msg.	
	Msg.	TSO	UDP	N/A	
PSP	Msg.	Full	UDP	Msg.	Custom NIC
1956	Dgram.	Full	N/A	Packet	Custom NIC
8] -	Msg.	TSO	TCP	Conn.	
	TLS TLS TLS 1] - C - PSP -	TcpCryptStreamTLSStreamTLSStreamTLSStreamTLSMsg.1]-Msg.PSPMsgDgram.	TcpCryptStreamNTLSStreamNTLSStreamTSOTLSStreamCrypto+TSOTLSMsg.Crypto+TSO1]-Msg.TSO-Msg.TSOPSPMsg.Full-Dgram.Full	TcpCryptStreamNTCPTLSStreamNUDPTLSStreamTSOTCPTLSStreamCrypto+TSOTCPTLSMsg.Crypto+TSONew1]-Msg.TSONew-Msg.TSOUDPPSPMsg.FullUDP-Dgram.FullN/A	TcpCryptStreamNTCPConn.TLSStreamNUDPConn.TLSStreamTSOTCPConn.TLSStreamCrypto+TSOTCPConn.TLSMsg.Crypto+TSONewMsg.1]-Msg.TSONewMsgMsg.TSOUDPN/APSPMsg.FullUDPMsgDgram.FullN/APacket

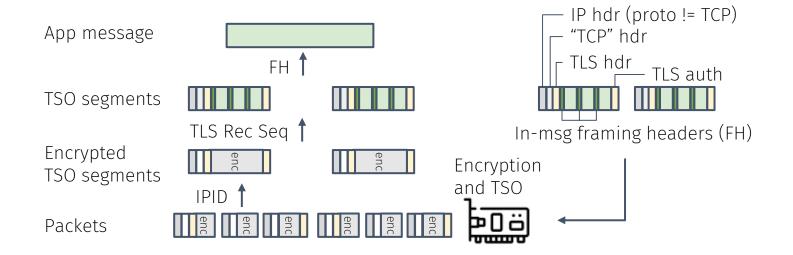
- Crypto offload with commodity NICs
 - No compromise from TLS/TCP
- Native transport
 - Flexible protocol design and easy network management

Key question - can we use existing TLS offload?

- Autonomous offload [1] (NVIDIA ConnectX-6/7)
 - Mainstream today
 - Likely similar architecture in Fungible (Microsoft) and Netronome NICs


• It works for non-TCP!

[1] Pismenny et al, ASPLOS'21 [2] https://docs.kernel.org/networking/tls-offload.html

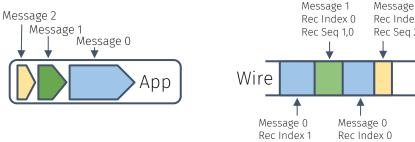

SDP overview

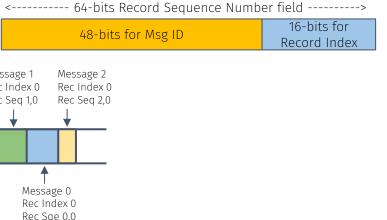
- One-to-many style socket
 - o fd = socket(SOCK_DGRAM, IPPROTO_HOMA) // but reliable
 setsockopt(fd, key) // key handshake already performed, like kTLS
 sendmsg(fd, msg, dst) // or io_uring_prep_sendto(sqe, fd, msg, dst)
- Transport-level encryption
 - Transport protocol must be aware of encryption, unlike TLS
- Opportunistic HW offload
- Optional 0-RTT handshake
- ~2800 LoC change in Homa/Linux
- ~300 LoC change in the mlx5 driver
- Support Linux 6.2 and 6.6

Two-level segmentation

- An app message can consist of multiple TSO segments
 - Example below: one app message over two TSO segments
- A TSO segment can consist of multiple packets

Per-message record sequence number space


• Granularity of parallelism

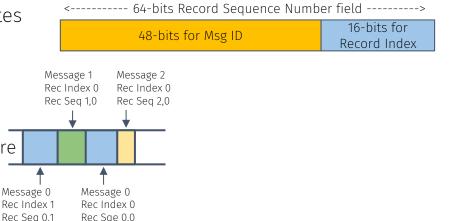

- TCP (Connection-level) strict in-order delivery
- SDP (Message-level) out-order delivery at both message level and segment level

Rec Sea 0.1

- A later message or segment in message can received earlier
- Global incrementing record sequence number no longer work

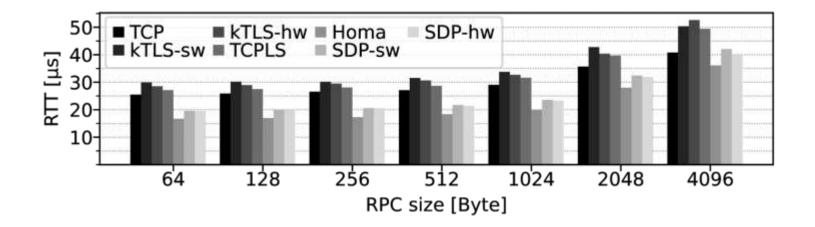
Solution: a record sequence number that integrates a message ID with an intra-message record index

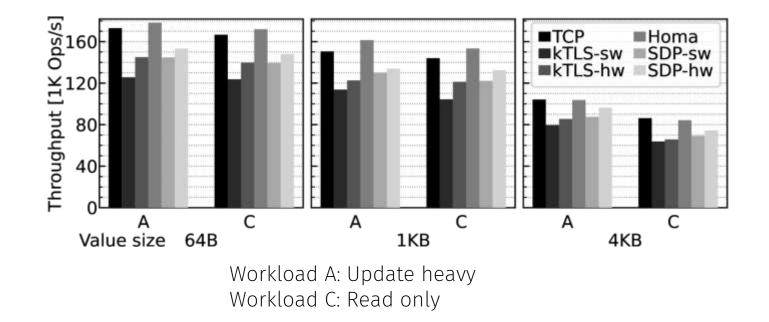




Per-message record sequence number space

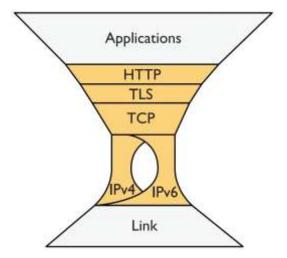
- Messages can reuse one hardware crypto engine by sharing the record sequence number
- Different messages can be sent and received independently with 48-bits Message ID
- Unique record sequence number for all records across and inside messages to prevent replay attack


Solution: a record sequence number that integrates a message ID with an intra-message record index


Unloaded latency

- SDP outperforms kTLS by 21–32% with hw offload and 16–35% without it
 - $\circ~$ Homa is faster than TCP by 5–35 %~

Redis throughput


• SDP outperforms kTLS by 5–13 % with TLS offload and 8–17 % without it

Implications

- Opportunity for (proper) evolution of transport in datacenters
 - Internet: TCP-as-a-substrate philosophy for middleboxes
 - Datacenter transports can still evolve

- Is Homa/Linux a right basis?
 - Generic and documented enough for abstraction, packet format, and reasonable performance to build other receiver-driven protocols

Trammell, B. et al., (2014). Evolving transport in the Internet. IEEE Internet Computing, 18(5), 60-64.

Thank you! Any questions?