

Autonomous Spatial Networks with *Bigraphs*

Josh Millar, Ryan Gibb, Anil Madhavapeddy, Hamed Haddadi

Ι

The Spatial Disconnect

Problem: Networks lack coherent spatial models

- Networks increasingly rely on spatial reasoning
 - e.g. policy enforcement or access control tied to physical presence
- Yet, lack a unified way to coordinate physical space.
- Spatial policies are *fragile* and *manual*.

A Model for Spatial Coordination

Bigraphs: a unifying model for spatial networks

- Capture *spatial*, *social*, and *network* linkages in a single formalism
- Properties
 - Dynamic; localized *reaction rules* respond to events
 - Verifiable; safe and correct of spatial policies
 - Compositional
 - policy reuse and reasoning at different spatial scales
 - nodes update only their local graph view.

Bigraphs for Spatial Coordination

Example bigraph, built from its underlying place and link graphs.

Bigraphs for Spatial Coordination

Spatially-Scoped Agents

- Growth of autonomous agents in smart environments [1, 2]
- To act reliability, agents need a structured 'world model'
 - free-form LLM outputs are insufficient for spatial reasoning [3].
- Decisions should be *local* and *rule-based* whenever possible
 - Why do I need an LLM to turn on the lights?!
- But also support contextual reasoning over multimodal data

[1] An et al., 2025 – IoT-LLM: Enhancing Real-World IoT Task Reasoning with Large Language Models
 [2] Shen et al., 2025 – GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development
 [3] Lu et al., 2025 – Learning to Generate Structured Output with Schema Reinforcement Learning

Spatially-Scoped Agents

Agent Tiers:

- **Leaf:** tiny models for fast, local decisions
- Delegated: small LMs reason over sub-graphs
 Root: LLMs for complex reasoning & model updates

Reasoning is **scoped to the smallest sub-graph & tier.**

Spatially-Scoped Agents

• Latency:

- Local agents act without cloud roundtrips.
- Immediate reactions via graph pattern matching to events.
- **Privacy**: agents only act on local graph views.
 - data captured shouldn't leave the physical space.
- Reliability: distributed, no single point of failure.
- Efficiency: minimized data movement and computation.

Contextual Reasoning over Bigraphs

- MCP server sits atop the graph layer
 - exposes its structure as a callable interface.
- Agents reason, update, or query over the graph via function calls
- Higher-tier LLMs push containerized programs, rules, and models to relevant nodes [1], verified and composed by the MCP server

[1] Shen et al., 2025 – GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development

Distributed Decision-Making

- User intents expressed as natural language policy
 - e.g. "during off-hours, dim lights in unoccupied common areas"
- LLM translates to *reaction rules* which *fire* on spatial transitions, updating local subgraphs.
- Maintains graph consistency along with availability

```
react shutdown_nodes =
/x (FN06.(Users.() || Node(x) || rest))
--> FN06.(rest);
begin brs
init ...;
rules = [{shutdown_nodes}, {...}];
```

Example reaction rule: all nodes in FN06 are shut down if no users are present.*

* Written in BigraphER, an OCaml library for the manipulation of bigraphs. <u>https://uog-bigraph.bitbucket.io/</u>

end.

Escalation over Tiers

- From Leaf Nodes to Agents
 - Rule-driven
 - "if more than one user present in the space, escalate with identifiers".
 - Unknown or ambiguous (i.e., no matching patterns)
 - graceful handling of novel scenarios.
- Between Agents
 - Self-Assessed Uncertainty;
 - Policy Scope Violation; manifest details the agent's jurisdiction
- Bounded Escalation
 - Defined schema, clear scoping, auditability & hash tracing.

What's Possible Locally?

MILK-V

 μ NPUs used in our recent benchmark [1], and how they compare in terms of GOPS, peak power draw, and theoretical efficiency (GOPS/mW).

MCUs handle complex jobs in real-time (e.g., audio transcription) with

- integrated μ NPUs,
- lightweight architectures,
- and neural compression

Challenges

- User-friendly bigraph building tools with
 - LiDAR-based indoor mapping (e.g, Apple's RoomPlan API)
 - RSSI fingerprinting
 - ML-based floor-plan annotations
- Distributed management and orchestration of logic
 - (i.e., what each agent knows, what it is allowed to act on, and how its coordination is scoped).
- Dealing with social/spatial ambiguity
 - e.g., how user's privacy settings apply when groups overlap / in shared space

Takeaways

- Spatial coordination is a missing layer in modern networks.
- Bigraphs offer a powerful model for connectivity.
- Spatially-scoped agentic control improves
 - latency,
 - privacy,
 - efficiency,
 - and reliability
- Local reasoning & context escalation balance efficiency with flexibility.

Questions?

jm4622@ic.ac.uk

Benchmarking Ultra-Low-Power µNPUs

- preprint, to appear at MobiCom 2025

Acknowledgements:

- Ryan Gibb, Dr. Sadiq Jaffer & Prof. Anil Madhavapeddy
- Adan Abu Naaj, Yushan Huang & Prof. Hamed Haddadi

